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» Suppose that after you have heard all the Prime Time talks

this summer, you each rank them from most to least
interesting.
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Motivating example

» Suppose that after you have heard all the Prime Time talks
this summer, you each rank them from most to least
interesting.

» Suppose you, as a group, then want to rank them in a single
list, to summarize the group's opinion.
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Motivating example

» Suppose that after you have heard all the Prime Time talks
this summer, you each rank them from most to least
interesting.

» Suppose you, as a group, then want to rank them in a single
list, to summarize the group's opinion.

» Q: Which is the best way to do this? What does that even
mean? What properties should a group ranking have?

» There are very many other applications (which we can discuss
at dinner).



» There is a set V of n voters and a set A of m alternatives
that they can rank.
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» There is a set V of n voters and a set A of m alternatives
that they can rank.

» Each voter has a complete strict ranking of all alternatives,
from top to bottom choice.
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» There is a set V of n voters and a set A of m alternatives
that they can rank.

» Each voter has a complete strict ranking of all alternatives,
from top to bottom choice.

» \We write ¢ > j to mean that for the given voter, i is strictly
preferred to j.
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» Putting all these together gives us a preference profile.
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Preferences

» There is a set V of n voters and a set A of m alternatives
that they can rank.

» Each voter has a complete strict ranking of all alternatives,
from top to bottom choice.

» We write ¢ > j to mean that for the given voter, i is strictly
preferred to j.

» Putting all these together gives us a preference profile.

» Formally, a profile is a function from V' to L(A), where L(A)
is the set of all possible rankings of A.

» Q: how many possible preference orders are there? how many
profiles? how big is this for m = 3,n = 27



Profile example

The alternatives are pizza toppings: anchovy, ham, pineapple. The
voters are Dweezil, Ahmet, Diva, and Moon. One day their profile

is:
Dw A D M
ham pineapple | anchovy | pineapple
anchovy | anchovy ham ham
pineapple ham pineapple | anchovy
A vyear later it is:
Dw A D M
ham anchovy | anchovy | pineapple
pineapple | pineapple | pineapple ham
anchovy ham ham anchovy




» A social welfare function (SWF) is a function that takes each
profile and outputs a societal ranking, which is just an
element of L(A).
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» A social welfare function (SWF) is a function that takes each

profile and outputs a societal ranking, which is just an
element of L(A).

» \We write ¢ > j to mean that 7 is strictly preferred to j in the
societal ranking.
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Social welfare function

» A social welfare function (SWF) is a function that takes each

profile and outputs a societal ranking, which is just an
element of L(A).

» We write ¢ > j to mean that i is strictly preferred to j in the
societal ranking.

» The goal is to find a SWF with good properties.
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There are many, some quite weird. For example:
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» (dictatorship) Choose one voter and output their ranking.

» (Kemeny) If everyone has the same (unanimous) ranking,
return that one. Otherwise return the unanimous profile that
is closest (in some well defined sense) to the input.

» (Borda) Give m points each time an alternative is ranked first,
m — 1 points each time it is ranked second, ..., 1 point if
ranked last. Rank in decreasing order of total score.
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Examples of social welfare functions

There are many, some quite weird. For example:

» (dictatorship) Choose one voter and output their ranking.

» (Kemeny) If everyone has the same (unanimous) ranking,
return that one. Otherwise return the unanimous profile that
is closest (in some well defined sense) to the input.

» (Borda) Give m points each time an alternative is ranked first,

m — 1 points each time it is ranked second, ..., 1 point if
ranked last. Rank in decreasing order of total score.

T o
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. Q: how many SWFs are
there when m = 3,n = 27



» For a fixed pair j, k of distinct alternatives, a profile is
(J, k)-unanimous if all voters agree j > k.
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» For a fixed pair j, k of distinct alternatives, a profile is
(J, k)-unanimous if all voters agree j > k.

» For a fixed pair j, k of distinct alternatives, two profiles are
{Jj, k}-equivalent if for each voter, the relative ranking of j
and k is the same in each profile.
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Useful terminology

» For a fixed pair j, k of distinct alternatives, a profile is
(j, k)-unanimous if all voters agree j > k.

» For a fixed pair j, k of distinct alternatives, two profiles are
{J, k}-equivalent if for each voter, the relative ranking of j
and k is the same in each profile.

» Q: Check these on the pizza topping example above. Which
are satisfied?
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ranking always agrees with v's ranking.



Useful terminology

» For a fixed pair j, k of distinct alternatives, a profile is
(j, k)-unanimous if all voters agree j > k.

» For a fixed pair j, k of distinct alternatives, two profiles are
{J, k}-equivalent if for each voter, the relative ranking of j
and k is the same in each profile.

» Q: Check these on the pizza topping example above. Which
are satisfied?

» For a fixed pair j, k of distinct alternatives, a voter v is
{j, k}-decisive if the relative ranking of j and k in the societal
ranking always agrees with v’s ranking.

» A dictator is a voter who is decisive over all pairs of
alternatives.



» Unanimity: for each j, k, if the profile is (j, k)-unanimous then
the SWF ranks j > k.
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» Unanimity: for each j, k, if the profile is (j, k)-unanimous then
the SWF ranks j > k.

» In other words, if all voters agree that j > k, then we must
have j > k.
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Desirable properties of a SWF

» Unanimity: for each j, k, if the profile is (j, k)-unanimous then
the SWF ranks j > k.

» In other words, if all voters agree that j > k, then we must
have j > k.

» Independence of Irrelevant Alternatives (IIA): for each j, k, if
two profiles are {j, k}-equivalent, then in the societal ranking
the relative ranking of j and k is the same.



Desirable properties of a SWF

» Unanimity: for each j, k, if the profile is (j, k)-unanimous then
the SWF ranks j > k.

» In other words, if all voters agree that j > k, then we must
have j > k.

» Independence of Irrelevant Alternatives (IIA): for each j, k, if
two profiles are {j, k}-equivalent, then in the societal ranking
the relative ranking of j and k is the same.

» In other words, the relative societal ranking of j and k
depends only on their relative rankings by individuals, and not
by their actual position in the ranking.



» After finishing dinner, Professor X decides to order dessert.

The waiter tells her there are two choices: apple pie and
blueberry pie.
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1A example

» After finishing dinner, Professor X decides to order dessert.
The waiter tells her there are two choices: apple pie and
blueberry pie.

» Professor X orders the apple pie. After a few minutes the
waiter returns and says that they also have cherry pie.



1A example

» After finishing dinner, Professor X decides to order dessert.
The waiter tells her there are two choices: apple pie and
blueberry pie.

» Professor X orders the apple pie. After a few minutes the
waiter returns and says that they also have cherry pie.

» Professor X says “In that case I'll have the blueberry pie.”



1A example

» After finishing dinner, Professor X decides to order dessert.
The waiter tells her there are two choices: apple pie and
blueberry pie.

» Professor X orders the apple pie. After a few minutes the
waiter returns and says that they also have cherry pie.

» Professor X says “In that case I'll have the blueberry pie.”

» This seems unreasonable!



» In this case we are really just voting for the top societal
alternative.
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» In this case we are really just voting for the top societal
alternative.

» We can use the usual majority rule: whichever alternative is
top-ranked more often.
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The simple case m = 2

» In this case we are really just voting for the top societal
alternative.

» We can use the usual majority rule: whichever alternative is
top-ranked more often.

» This obviously satisfies both desirable properties above (at
least if n > 3), and there is no dictator.



Theorem (Arrow, 1951)

Suppose that m > 3 and n > 2. Then every social welfare function
that satisfies both Unanimity and 1A is a dictatorship.

This was a big surprise when first proved! The proof | present was
published by Yu (2012), simplifying previous proofs.




» Order the voters in some fixed way vy, ..., v, and consider an
arbitrary pair of distinct alternatives i, j.
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» Order the voters in some fixed way vy, ..., v, and consider an
arbitrary pair of distinct alternatives i, j.

» Choose any (i, j)-unanimous profile. By Unanimity, i > j in
the societal ordering.
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Proof stage 1: Pivotal voter exists, for each pair of
alternatives

» Order the voters in some fixed way vy, ..., v, and consider an
arbitrary pair of distinct alternatives 4, j.

» Choose any (i, j)-unanimous profile. By Unanimity, ¢ > j in
the societal ordering.

» Swap ¢ and j in each voter's order in turn. After all have been
done, the societal order says j > ¢, by Unanimity.
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Proof stage 1: Pivotal voter exists, for each pair of
alternatives

» Order the voters in some fixed way vy, ..., v, and consider an
arbitrary pair of distinct alternatives 4, j.

» Choose any (i, j)-unanimous profile. By Unanimity, ¢ > j in
the societal ordering.

» Swap ¢ and j in each voter's order in turn. After all have been
done, the societal order says j > ¢, by Unanimity.

» The first voter for which the societal ordering of ¢ and j flips
is called pivotal for (i, j).

» By IIA, it doesn’'t matter which (i, j)-unanimous profile we
use — the same voter, say v, is found each time. Call this
voter’s position n;;.



» Choose a third alternative k, and start with any profile P.
Without loss of generality, assume that j > k in v's ranking.
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Proof stage 2: four profiles

» Choose a third alternative k, and start with any profile P.
Without loss of generality, assume that j > k in v's ranking.

» Profile P is {4, k}-equivalent to a profile P’ ranking ¢ at the
bottom for all voters strictly before v, i at the top for all
voters after v, and 7 in the middle for v.
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Proof stage 2: four profiles

» Choose a third alternative k, and start with any profile P.
Without loss of generality, assume that j > k in v's ranking.

» Profile P is {4, k}-equivalent to a profile P’ ranking ¢ at the
bottom for all voters strictly before v, i at the top for all
voters after v, and 7 in the middle for v.

» Profile P’ is {i, k}-equivalent to a profile P” ranking j at the
top for all voters strictly before v, and ranking j in the middle
for voters v and later.

» Profile P is obtained from P” by swapping j and k for
voters strictly before v.
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» In P”, we must have j = k by unanimity. We also have i = j
since v is pivotal for (7,7). Thus i > k.
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» In P”, we must have j = k by unanimity. We also have i = j
since v is pivotal for (7,7). Thus i > k.

» Thus in P’ we have j >~ 7 because v is pivotal, and i = k by
{i, k}-equivalence. Thus j > k.
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Proof stage 3: pivotal voter for (i, j) is decisive over {j, k}

» In P”, we must have j = k by unanimity. We also have i > j
since v is pivotal for (i,7). Thus i = k.

» Thus in P’ we have j = i because v is pivotal, and i = k by
{i, k}-equivalence. Thus j >~ k.

» Hencein P, j ~ k.
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Proof stage 3: pivotal voter for (i, j) is decisive over {j, k}

» In P”, we must have j = k by unanimity. We also have i > j
since v is pivotal for (i,7). Thus i = k.

» Thus in P’ we have j = i because v is pivotal, and i = k by
{i, k}-equivalence. Thus j >~ k.

» Hencein P, j ~ k.
Since P was arbitrary, v is decisive over {j, k}.

v

» Hence j = k in P"” so we have not yet reached the pivotal
voter for (j, k) — in other words, nj;, > ny;.



» Since i, j, k are arbitrary, we have for all distinct ¢, j, k

Njk = Nij 2 Nkj > Nijk.
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» Since i, j, k are arbitrary, we have for all distinct ¢, j, k

Nk = Nij > N = M.
» Thus all the n;; are equal, and hence v is pivotal for all pairs
of alternatives.
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Proof stage 4: Pivotal voter is a dictator

» Since 1, j, k are arbitrary, we have for all distinct ¢, j, k
Njk = Ngj = N = Mgk

» Thus all the n;; are equal, and hence v is pivotal for all pairs
of alternatives.

» Thus v is decisive over all pairs of alternatives, and is hence a
dictator.



Proof stage 4: Pivotal voter is a dictator

» Since 1, j, k are arbitrary, we have for all distinct ¢, j, k
Njk = Ngj = N = Mgk
» Thus all the n;; are equal, and hence v is pivotal for all pairs

of alternatives.

» Thus v is decisive over all pairs of alternatives, and is hence a
dictator.

» This ends the proof!



» Arrow was the youngest Nobel Economics winner, largely for
this result.
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Where to from here?
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Arrow was the youngest Nobel Economics winner, largely for
this result.

Arrow’s Theorem leads quickly to the Gibbard-Satterthwaite
theorem, which says that if we are choosing a unique winner
instead of ranking, and every candidate can win in some
situation, then the only way to avoid incentives for strategic
voting is to have a dictator.
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Where to from here?

» Arrow was the youngest Nobel Economics winner, largely for
this result.

» Arrow's Theorem leads quickly to the Gibbard-Satterthwaite
theorem, which says that if we are choosing a unique winner
instead of ranking, and every candidate can win in some
situation, then the only way to avoid incentives for strategic
voting is to have a dictator.

» Many people were shocked by such results, believing that they
make democracy impossible.

» Eventually it was realized that maybe IlA is not such a
reasonable assumption.

» We can try to use more information (how much does each
voter like a given alternative) rather than just a ranking, but
that causes other problems.



» Donald Saari (UC Irvine) has several interesting books on
related topics, and really hates Arrow’'s theorem!
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https://link.springer.com/content/pdf/10.1007/s00199-012-0693-3.pdf
https://link.springer.com/content/pdf/10.1007/s00199-012-0693-3.pdf

Further reading

» Donald Saari (UC Irvine) has several interesting books on
related topics, and really hates Arrow's theorem!

» Yu's paper: Econ. Theory (2012) 50:523-525,
https://link.springer.com/content/pdf/10.1007/
s00199-012-0693-3.pdf
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