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Formal model

I A: finite set of n agents; O: set of n objects.

I Set of all strict linear orders of objects: L(O).

I Set of all profiles is X := L(O)A.

I A matching is a bijection A→ O; the set of all such is M(A,O).

I The house allocation problem: find a matching rule
f : X →M(A,O).
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Informal description

I Given strict ordinal preferences of agents over objects, match each
agent with an object!

I Common applications: students to dorm rooms, military to overseas
postings, professors to offices.

I Closely related problems: school choice, multi-unit assignment.
I Key standard axiomatic properties:

I Pareto efficiency: can’t help someone without hurting someone else;
I Strategyproofness: no agent ever has incentive to lie about their

preferences.
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Commonly used solution: serial dictatorship (SD)

I Fix an exogenous order on agents.

I Let them choose in turn, according to this order, their favorite
remaining object.

This rule is strategyproof, Pareto efficient and easy to implement.
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Another solution: Naive Boston

I Choose an exogenous tiebreaking order.

I In round i, all remaining agents bid for their ith preference.

I Use the tiebreaking order to decide who gets an object.

I Continue with the remaining agents, after removing the satisfied
agents and their objects.

This rule is not strategyproof, but is Pareto efficient and easy to
implement.
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Adaptive Boston

I Choose an exogenous tiebreaking order.

I In round i, all remaining agents bid for their most preferred remaining
object.

I Use the tiebreaking order to decide who gets an object.

I Continue with the remaining agents, after removing the satisfied
agents and their objects.

This rule is not strategyproof, but is Pareto efficient and easy to
implement.
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Preference model

I We consider large random markets with heterogeneous preferences.

I More precisely, we use the Impartial Culture, where agents sample
independently from the uniform distribution on preference orders.

I This allows for very precise limiting results on performance of our
algorithms.

I The Boston algorithms have a balls-in-bins interpretation: each bid is
a ball, and each object is a bin.
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Assumptions on agent behavior

I We consider only sincere play by agents.

I Justification 1: if each agent knows only the (uniform) distribution of
preferences of the other agents, then there is no incentive to deviate
from sincerity; in other words, the sincere profile is a Bayesian Nash
equilibrium for the game induced by the mechanism.

I Justification 2: understanding the social choice rule underlying a
given mechanism is a first important step when comparing
mechanisms, and the approach is often used in the literature.

In any case, from now on we shall ignore any issues of strategic behavior
by agents.
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Overview of key results for Boston

I With high probability most of the agents can be matched to one of
their first few preferences — and both Boston algorithms will
successfully do so.

I In particular, the value of the preference rank R an agent is likely to
obtain has much the same distribution for any sufficiently large n.

I More precisely, a given agent’s preference rank R for the item he is
assigned has a probability distribution that converges to a limit as
n→∞.

I We describe explicitly the limiting distributions for the preference rank
R(θ) obtained by an agent in position θ ∈ [0, 1] in the choosing order,
as a function of θ.

I These results do not hold for SD, because of the way the last agents
are treated.
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Key recursive quantities

Definition

The sequence (ωr)
∞
r=1 is defined by ω1 = 1 and the recursion

ωr+1 = ωre
−ωr for r ≥ 1.

Lemma

For all r ≥ 3,
1

r + log r
< ωr <

1

r
.
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Theorem (Number of agents remaining)

Fix r ≥ 1 and a relative position θ ∈ [0, 1]. The number Nn(r, θ) of agents
starting at position ≤ θ who are still present at round r satisfies

1

n
Nn(r, θ)

p→ zr(θ)

where z1(θ) = θ and

zr+1(θ) = zr(θ)−
(

1− e−zr(θ)
)
ωr for r ≥ 1 (1)

for Naive Boston. For Adaptive Boston the analogous result is

1

n
Nn(r, θ)

p→ yr(θ)

where y1(θ) = θ and

yr+1(θ) = yr(θ)− e1−r
(
1− exp

(
−er−1yr(θ)

))
for r ≥ 1. (2)
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Number of agents remaining at a given round

Corollary

the total number of agents (and of items) present at round r satisfies

1

n
Nn(r, 1)

p→ ωr

for Naive Boston and
1

n
Nn(r, 1)

p→ e1−r

for Adaptive Boston.
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Figure: The limiting fraction of agents with relative position θ or better who
survive until round r.
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quantity r = 1 r = 2 r = 3

P(here) 1 1− e−θ (1− e−θ)
(

1− e−θ−e−θ
)

P(stay | here) 1− e−θ 1− e−θ−e−θ 1− e−θ−e−θ−e−θ−e
−θ

Table: Limiting quantities as n→∞ for the early rounds of the Naive Boston
algorithm for agent at relative position θ.

I This gives us enough information to determine the welfare outcomes,
because exiting at round r means the agent gets his rth preference.

I The same is NOT true for Adaptive Boston.
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Extra stuff for Adaptive Boston

I An agent who exits at round r > 1 can get any rank object s with
s ≥ r.

I The quantity urs, the limiting probability that an agent bids for his
sth choice given that he is present at round r, is recursively defined
and crucial to the analysis.

I As for Naive Boston we derive limiting distributions for the exit time
and the probability of exiting at a given round, but also the preference
rank bid for in a given round, and the rank of the item obtained.
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Welfare measures

I We convert the rank information into welfare using a scoring rule.

I We consider here only k-approval welfare (probability of getting one
of your top k choices) and normalized Borda.

I To aggregate over agents, we consider utilitarian welfare, the average
welfare over agents, and order bias, the difference between welfare of
the first and last agent in the tiebreak order.

I For all three algorithms, the first agent always gets maximum possible
welfare, and the last agent gets worst welfare, so computing order
bias reduces to looking at the fate of the last agent.
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Theorem

The average utilitarian k-approval welfare over all agents satisfies

1

n
Wn(1)

p→


1− ωk+1 for Naive Boston

(1− e−1)
∑
{(r,s):r≤s≤k} e

1−rurs for Adaptive Boston
k
k+1 for serial dictatorship.

The sequence ωk is defined by ω1 = 1 and the recursion ωk+1 = ωke
−ωk

for k ≥ 1. The bivariate sequence urs is defined by the recursion u11 = 1,
u1,s = 0 for s > 1, urs = 0 for s < r, and

urs = e1−rur−1,s−1 + (1− e1−r)ur,s−1
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Figure: Limiting values as n→∞ of k-approval welfare, for 1 ≤ k ≤ 10. Bottom:
Serial Dictatorship. Middle: Adaptive Boston. Top: Naive Boston.
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Figure: Limiting values as n→∞ of the probability of getting at worst one’s 3rd
choice, as a function of θ. Serial Dictatorship. Adaptive Boston. Naive Boston.
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Theorem

For each fixed k, the k-approval order bias of Naive Boston is
asymptotically

∏k+1
j=2(1− ωj), while for Adaptive Boston it is

asymptotically

1− e−1
∑

{(r,s):r≤s≤k}

(
1− e−1

)r−1
urs.

and for Serial Dictatorship it is asymptotically 1.
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Figure: Limiting values as n→∞ of k-approval order bias, for 1 ≤ k ≤ 10. Top:
Serial Dictatorship. Middle: Adaptive Boston. Bottom: Naive Boston.
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Differences between SD and Boston

I There is no limiting distribution for SD. For example, the preference
rank of the last agent’s object is uniformly distributed over all n
objects.

I The last 20% of agents under SD do much worse in expectation than
under the Boston algorithms.

I Naive Boston provably beats SD on welfare and order bias, and we
suspect that Adaptive Boston does too.
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Unsolved questions

I What is the expected rank of the item gained by a random agent?

I For SD, the asymptotic answer Θ(log n) was derived by Frieze &
Pittel and this was refined to an exact formula
((n+ 1)Hn − n)/n ∼ log n by Knuth.

I For the Boston mechanisms, our results show only that the rank is
o(n), but we suspect that it is Θ(log n).

I It is known that for the rank-maximizing mechanism RM, which
maximizes the number of agents receiving their first choice, then
subject to that the number of agents receiving their second choice,
etc, the expected average rank in a random market is asymptotically
constant.

I Although similar to RM at first sight, Naive Boston is not as strict,
since it makes a choice based on tiebreaking at the first round, and
hence may diverge from RM even at the second round.
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Possible extensions

I The Boston algorithms discussed here are specializations of
algorithms commonly used for school choice to the case where each
school has a single seat and schools have a common preference order
over applicants.

I Further analysis in the general school choice case would be very
desirable.

I It would also be interesting to study welfare and order bias in the
multi-unit assignment model.

I Simulation shows that the Mallows preference model yields the same
ranking of welfare performance of the algorithms.
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