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Basics

Motivation

I Social networks are known to have large influence on many
aspects of human behaviour, including beliefs, preferences,
decisions. See Jackson (2008) for basic background.

I Girard, Seligman, Liu developed a model of belief change in a
social network.

I This talk sets out a broader research programme.
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Basics

Basic features of the model

I There is an underlying connected graph G = (V,E). Vertices
are agents and edges represent a social relation (“friendship”).

I Fix a logical proposition p. Each agent has one of three
beliefs about p: true (green), false (red), undecided (yellow).

I At each time step, each agent simultaneously updates its
belief, based on the beliefs of itself and its neighbours in the
graph.

I GSL model uses two rules:

I strong influence: if all neighbours are green, node turns green;
I weak influence: if no neighbours are red and at least one is

green, red node turns yellow.

I By symmetry, each rule also holds when the roles of red and
green are reversed. Note that a yellow node can only change
colour under strong influence.
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Basics

Refining the original GSL model

I The thresholds for strong and weak influence are very high.

I For strong influence, we can require only a strict majority of
green neighbours in order to change our mind to green.

I For weak influence, (assuming we are red) we can become
yellow if at most fraction θ of our neighbours agree with us,
and at least one neighbour is green. For now, take θ = 0.

I We have a 3-colour model, with lack of symmetry, as yellow is
more resistant to changing colour than the others.

I A related interpretation: green means “break the law”, red
means “report offenders”, yellow means “stay neutral”.
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Basics

Broader context

I Diffusion models on connected graphs have been widely
studied. Main applications:

I percolation in statistical physics
I spread of disease
I adoption of new products, technologies, behaviours
I spread of beliefs, preferences, information

I Abstractly, each node has a certain state (colour), and each
node updates its colour based on some local rule. Updates
can be simultaneous, sequential (fixed order of agents), or
asynchronous (anyone can move).

I There are two main methodologies: analytic results for
specific network models, and agent-based simulation.
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Basics

Transition rules I

I Colour changes can be deterministic or probabilistic. We focus
on deterministic results in this talk. In complete generality
this includes cellular automata (e.g. Conway’s Game of Life)
which are known to be too complex for useful study.

I Most common setup is 2 colours. Can use a monotone voting
rule (simple game) among neighbours’ colours, and switch my
colour to the winning colour.

I In linear threshold models, each node v has a threshold
θv ∈ [0, 1], and a weight bvw for each neighbour w. If∑

w bvw > θv, then v changes its colour in some way.
I Majority dynamics falls into both classes — each node has

weight 1 for all others, and θv = deg(v)/2.
I Higher thresholds correspond to a bias in favour of the status

quo.
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Basics

Transition rules II

I For m colours, I poll my neighbours, aggregate using some
voting rule, and adopt the winner. Call this a local voting rule.

I Plurality is the simplest, and very little else has been studied.

I GSL model is in this class, for m = 3. The voting rule is
unnatural, and depends on the node. If I vote green, then
green wins, unless everyone else votes yellow (yellow wins), or
someone else votes red and no one votes green (red wins).
Same with red and green reversed. If I vote yellow, then
yellow wins unless everyone else votes green (green wins) or
red (red wins).

I The class of local voting rules that do not depend on the
node, and are anonymous and neutral (that is, ordinary voting
rules + polling neighbours) is worth studying.
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Example: Petersen, step 0
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Example: Petersen, step 2
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Example: Petersen, step 3

Mark C. Wilson



Basics

Example: Petersen, step 4
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Basics

Example: K10, converges immediately
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Basics

Fundamental questions

I (equilibrium) Does the process converge in finite time on a
given finite G? at what rate?

I (unanimity) If it converges, do all nodes have the same colour?

I (wisdom of crowds) If unanimity is achieved, is it the “correct”
colour? if not, does the “correct” colour win a plurality vote?

I (homophily) Describe the effect on the process of assuming
that nodes of same colour are more likely to be connected.

I (cascades) When do arbitrary changes to some nodes
propagate to a large fraction of the network?
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Basics

Methodological issues

I “There are too many models, and it is hard to prove anything
about them”.

I There is no standard methodology for “network science”.

I Realistic models of social networks are hard to find. Some
popular theoretical models are: Barabasi-Albert (preferential
attachment), Strogatz-Watts (small worlds), Erdős-Renyi
(random graph).

I Validation of models is not very advanced.

I Proving anything rigorous about dynamics, even for the above
models, is technically hard.

I Simulations may be sensitive to small changes in initial
conditions.
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Basics

Simple observations for GSL model

I If the strong influence threshold is sufficiently large, then any
two nodes sharing an edge and having the same colour, will
never change colour.

I If no node is initially yellow, none will ever turn yellow. Thus
the standard majority dynamics model is embedded in ours.

I A bipartite graph where one partition is green and the other
red leads to a cycle of order 2.

I A pendant vertex whose neighbour is not yellow will change
colour immediately.

I A star graph converges in 2 steps to unanimity if the centre is
not yellow, otherwise converges immediately.
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Basics

Special case: complete graph

I Homophily is irrelevant, because everyone is a neighbour of
everyone else.

I Simultaneous majority dynamics converge in one step to
unanimity if |V | is odd. The crowd is wise (related to
Condorcet jury theorem).

I With high probability, random initial colourings will converge
immediately under GSL dynamics with high threshold. This
happens whenever there are at least two nodes of each colour,
for example.
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Basics

Some related models and work

I Kempe, Kleinberg, Tardos (2003). Update rule:
(generalization of) linear threshold model with m = 2. Aim:
find optimal initial set of green nodes of given size k to
maximize number of green nodes in equilibrium (influence
maximization). Result: the problem is NP-complete, but a
greedy algorithm gives a (1− 1/e)-approximation ratio.

I Mossel, Neeman, Tamuz (2012). Update rule: local plurality.
Results: for m = 2, crowds are not wise in general, but they
are when no orbit of the automorphism group on the graph is
small.
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Basics

GSL model initial explorations

I For the “right” values of parameters, three standard graph
models seem to lead to consensus very often.

I See Sage worksheet!
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Basics

Plans for future work
I Concentrate on “realistic” network models, and perhaps even

real networks, if we can estimate the parameters involved. Try
with real data.

I Consider optimization and mechanism design problems. For
example, if we can construct the network but have an upper
bound on |E|, what topology is most likely to lead to
information aggregation?

I Consider polling over distance-k neighbourhoods for
increasing k, and quantify how phenomena depend on k.

I Strategic behaviour - when does an agent have incentive to
vote untruthfully? to break edges?

I Instead of threshold dynamics, consider best reply voting,
where we poll our neighbours and act as though only our
1-neighbourhood is taking part in the election. For complete
graphs, some results are known.
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