Power measures and the sequential query process

Mark C. Wilson
UMass Amherst

Oldies but Goodies COMSOC Video Seminar 2022-04-14

TU games and simple games

- A monotone TU-game is a cooperative game $G=(X, v)$ given in coalitional form: for the player set X there is a map $v: 2^{X} \rightarrow \mathbb{R}$ with $v(\emptyset)=0$, and $A \subseteq B$ implies $v(A) \leq v(B)$.

TU games and simple games

- A monotone TU-game is a cooperative game $G=(X, v)$ given in coalitional form: for the player set X there is a map $v: 2^{X} \rightarrow \mathbb{R}$ with $v(\emptyset)=0$, and $A \subseteq B$ implies $v(A) \leq v(B)$.
- A simple game is a TU game where $v(A) \in\{0,1\}$ for all A.
- The marginal function of player i is

TU games and simple games

- A monotone TU-game is a cooperative game $G=(X, v)$ given in coalitional form: for the player set X there is a map $v: 2^{X} \rightarrow \mathbb{R}$ with $v(\emptyset)=0$, and $A \subseteq B$ implies $v(A) \leq v(B)$.
- A simple game is a TU game where $v(A) \in\{0,1\}$ for all A.
- A winning coalition in a simple game is a subset $A \subseteq X$ with $v(A)=1$.

TU games and simple games

- A monotone TU-game is a cooperative game $G=(X, v)$ given in coalitional form: for the player set X there is a map $v: 2^{X} \rightarrow \mathbb{R}$ with $v(\emptyset)=0$, and $A \subseteq B$ implies $v(A) \leq v(B)$.
- A simple game is a TU game where $v(A) \in\{0,1\}$ for all A.
- A winning coalition in a simple game is a subset $A \subseteq X$ with $v(A)=1$.
- The marginal function of player i is

$$
\partial_{i} v(A)=v(A)-v(A \backslash\{i\}) .
$$

Sequential random query process for simple games

- Sample uniformly without replacement until we have seen enough players to have a winning coalition.

- We can rescale to $[0,1]$ by a function $F(n, k)$, and define $Q_{F}^{*}(G):=E[F(Q(G))]$

Sequential random query process for simple games

- Sample uniformly without replacement until we have seen enough players to have a winning coalition.
- The number Q of queries is at least $k+1$ if and only if the first k do not form a winning coalition.
\Rightarrow Hence Q is a random variable with expectation

- We can rescale to $[0,1]$ by a function $F(n, k)$, and define $Q_{F}^{*}(G):=E[F(Q(G))]$

Sequential random query process for simple games

- Sample uniformly without replacement until we have seen enough players to have a winning coalition.
- The number Q of queries is at least $k+1$ if and only if the first k do not form a winning coalition.
- Hence Q is a random variable with expectation
$E[Q(G)]=n+1-\sum_{k=1}^{n} P($ random coalition of size k is winning $)$.
- We can rescale to $[0,1]$ by a function $F(n, k)$, and define $Q_{F}^{*}(G):=E[F(Q(G))]$.

Sequential random query process for simple games

- Sample uniformly without replacement until we have seen enough players to have a winning coalition.
- The number Q of queries is at least $k+1$ if and only if the first k do not form a winning coalition.
- Hence Q is a random variable with expectation

$$
E[Q(G)]=n+1-\sum_{k=1}^{n} P(\text { random coalition of size } k \text { is winning }) .
$$

- We can rescale to $[0,1]$ by a function $F(n, k)$, and define $Q_{F}^{*}(G):=E[F(Q(G))]$.

Motivating example

- Devise a less crude measure of the manipulability of a voting rule.
\rightarrow The most commonly used measure simply gives 0 or 1 for a given profile, depending on whether it is manipulable by some coalition or not.
\rightarrow A more sophisticated measure is the size of the minimum manipulating coalition.
- W/e want to see how easy it would be to assemble a manipulating coalition - the query model is one idea.
- Concrete example: Borda rule, 2 voters $a b c, 1$ voter $b a c, 1$ voter cba.

Motivating example

- Devise a less crude measure of the manipulability of a voting rule.
- The most commonly used measure simply gives 0 or 1 for a given profile, depending on whether it is manipulable by some coalition or not.
\rightarrow A more sophisticated measure is the size of the minimum manipulating coalition.
- We want to see how easy it would be to assemble a manipulating coalition - the query model is one idea. - Concrete example: Borda rule, 2 voters $a b c, 1$ voter $b a c, 1$ voter cba.

Motivating example

- Devise a less crude measure of the manipulability of a voting rule.
- The most commonly used measure simply gives 0 or 1 for a given profile, depending on whether it is manipulable by some coalition or not.
- A more sophisticated measure is the size of the minimum manipulating coalition.
\rightarrow We want to see how easy it would be to assemble a manipulating coalition - the query model is one idea. - Concrete examnle: Borda rule, 2 voters abc, 1 voter hac, 1 voter cba

Motivating example

- Devise a less crude measure of the manipulability of a voting rule.
- The most commonly used measure simply gives 0 or 1 for a given profile, depending on whether it is manipulable by some coalition or not.
- A more sophisticated measure is the size of the minimum manipulating coalition.
- We want to see how easy it would be to assemble a manipulating coalition - the query model is one idea.
Concrete example: Borda rule, 2 voters abc, 1 voter bac, 1
voter cba.

Motivating example

- Devise a less crude measure of the manipulability of a voting rule.
- The most commonly used measure simply gives 0 or 1 for a given profile, depending on whether it is manipulable by some coalition or not.
- A more sophisticated measure is the size of the minimum manipulating coalition.
- We want to see how easy it would be to assemble a manipulating coalition - the query model is one idea.
- Concrete example: Borda rule, 2 voters $a b c, 1$ voter $b a c, 1$ voter $c b a$.

Collective and individual measures

- The process is equivalently described via first choosing a probability measure μ_{n} on $\{0, \ldots, n\}$, sampling from it and then choosing a subset of that size uniformly at random.

The function $Q_{F}^{*}(G)$ is a measure of decisiveness that generalizes Coleman's index.

- The marginal $q_{F}^{*}(G)$ of $Q_{F}^{*}(G)$ is a power index.
\rightarrow The simplest F (corresponding to uniformly choosing the size of the subset) gives a new measure, that we call $Q_{0}^{*}(G)$
$\rightarrow Q_{0}^{*}(G)$ is the expected fraction of the maximum possible number of queries saved when we sample as above.

Collective and individual measures

- The process is equivalently described via first choosing a probability measure μ_{n} on $\{0, \ldots, n\}$, sampling from it and then choosing a subset of that size uniformly at random.
- The function $Q_{F}^{*}(G)$ is a measure of decisiveness that generalizes Coleman's index.
- The simplest F (corresponding to uniformly choosing the size of the subset) gives a new measure, that we call $Q_{0}^{*}(G)$
$\Rightarrow Q_{0}^{*}(G)$ is the expected fraction of the maximum possible number of queries saved when we sample as above.

Collective and individual measures

- The process is equivalently described via first choosing a probability measure μ_{n} on $\{0, \ldots, n\}$, sampling from it and then choosing a subset of that size uniformly at random.
- The function $Q_{F}^{*}(G)$ is a measure of decisiveness that generalizes Coleman's index.
- The marginal $q_{F}^{*}(G)$ of $Q_{F}^{*}(G)$ is a power index.
> \rightarrow The simplest F (corresponding to uniformly choosing the size of the subset) gives a new measure, that we call $Q_{0}^{*}(G)$.
> - $Q_{0}^{*}(G)$ is the exnected fraction of the maximum nossible number of queries saved when we sample as above.

Collective and individual measures

- The process is equivalently described via first choosing a probability measure μ_{n} on $\{0, \ldots, n\}$, sampling from it and then choosing a subset of that size uniformly at random.
- The function $Q_{F}^{*}(G)$ is a measure of decisiveness that generalizes Coleman's index.
- The marginal $q_{F}^{*}(G)$ of $Q_{F}^{*}(G)$ is a power index.
- The simplest F (corresponding to uniformly choosing the size of the subset) gives a new measure, that we call $Q_{0}^{*}(G)$.
number of queries saved when we sample as above.

Collective and individual measures

- The process is equivalently described via first choosing a probability measure μ_{n} on $\{0, \ldots, n\}$, sampling from it and then choosing a subset of that size uniformly at random.
- The function $Q_{F}^{*}(G)$ is a measure of decisiveness that generalizes Coleman's index.
- The marginal $q_{F}^{*}(G)$ of $Q_{F}^{*}(G)$ is a power index.
- The simplest F (corresponding to uniformly choosing the size of the subset) gives a new measure, that we call $Q_{0}^{*}(G)$.
- $Q_{0}^{*}(G)$ is the expected fraction of the maximum possible number of queries saved when we sample as above.

Generalization to TU-games

- The obvious definition is

$$
Q_{F}^{*}(G)=\sum_{S \subseteq X}\binom{n}{|S|} \mu_{n}(|S|) v(S)
$$

and

$$
q_{F}^{*}(G)=\sum_{S \subseteq X}\binom{n}{|S|} \mu_{n}(|S|) \partial_{i} v(S) .
$$

- The second is always a value (or allocation) that depends only on the size of the subset.

Generalization to TU-games

- The obvious definition is

$$
Q_{F}^{*}(G)=\sum_{S \subseteq X}\binom{n}{|S|} \mu_{n}(|S|) v(S)
$$

and

$$
q_{F}^{*}(G)=\sum_{S \subseteq X}\binom{n}{|S|} \mu_{n}(|S|) \partial_{i} v(S) .
$$

- The second is always a value (or allocation) that depends only on the size of the subset.

Name	$F(n, k)$	$\mu_{n}(k)$	Value on voting game
Coleman/Banzhaf	$2^{-n} \sum_{j \geq k}\binom{n}{j}$	$\operatorname{Bin}(1 / 2)$	$3 / 4=0.75$
Shapley	$1-H_{k-1} / H_{n}$	$\operatorname{Unif}(1 . . n)$	$36 / 50=0.72$
Q_{0}^{*} / q_{0}^{*}	$1-k /(n+1)$	$\operatorname{Unif}(0 . . n)$	$2 / 3 \approx 0.67$

Another connection to the Shapley value

- In applications of Shapley the grand coalition is always winning and we seek to divide up the surplus.
\Rightarrow In some applications the grand coalition is not winning (e.g. the voting game example above).
- If we allow this, our q_{F}^{*} are precisely analogous to semivalues and the characterization theorem of Dubey, Neyman \& Weber (1981) extends naturally.
- In this new model, a_{0}^{*} is the exact analog of the Shapley value.

Another connection to the Shapley value

- In applications of Shapley the grand coalition is always winning and we seek to divide up the surplus.
- In some applications the grand coalition is not winning (e.g. the voting game example above).
- If we allow this, our q_{F}^{*} are precisely analogous to semivalues and the characterization theorem of Dubey, Neyman \& Weber (1981) extends naturally.

Another connection to the Shapley value

- In applications of Shapley the grand coalition is always winning and we seek to divide up the surplus.
- In some applications the grand coalition is not winning (e.g. the voting game example above).
- If we allow this, our q_{F}^{*} are precisely analogous to semivalues and the characterization theorem of Dubey, Neyman \& Weber (1981) extends naturally.

Another connection to the Shapley value

- In applications of Shapley the grand coalition is always winning and we seek to divide up the surplus.
- In some applications the grand coalition is not winning (e.g. the voting game example above).
- If we allow this, our q_{F}^{*} are precisely analogous to semivalues and the characterization theorem of Dubey, Neyman \& Weber (1981) extends naturally.
- In this new model, q_{0}^{*} is the exact analog of the Shapley value.

Future work

- An entire class of values/power indices and potentials/decisiveness indices remains to be explored.
\rightarrow Axiomatic characterization of these new values.
- Finding applications of new values such as q_{0}^{*}. We give applications to manipulability of voting rules. Perhaps machine learning applications?
- Q_{0}^{*} appears better than Coleman in discriminating between simple games, and should be studied more.

Future work

- An entire class of values/power indices and potentials/decisiveness indices remains to be explored.
- Axiomatic characterization of these new values.
- Finding applications of new values such as q_{0}^{*}. We give applications to manipulability of voting rules. Perhaps machine learning applications?
- Q_{0}^{*} appears better than Coleman in discriminating between simple games, and should be studied more.

Future work

- An entire class of values/power indices and potentials/decisiveness indices remains to be explored.
- Axiomatic characterization of these new values.
- Finding applications of new values such as q_{0}^{*}. We give applications to manipulability of voting rules. Perhaps machine learning applications?
$\rightarrow Q_{0}^{*}$ appears better than Coleman in discriminating between simple games, and should be studied more.

Future work

- An entire class of values/power indices and potentials/decisiveness indices remains to be explored.
- Axiomatic characterization of these new values.
- Finding applications of new values such as q_{0}^{*}. We give applications to manipulability of voting rules. Perhaps machine learning applications?
- Q_{0}^{*} appears better than Coleman in discriminating between simple games, and should be studied more.

