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TU games and simple games

I A monotone TU-game is a cooperative game G = (X, v)
given in coalitional form: for the player set X there is a map
v : 2X → R with v(∅) = 0, and A ⊆ B implies v(A) ≤ v(B).

I A simple game is a TU game where v(A) ∈ {0, 1} for all A.

I A winning coalition in a simple game is a subset A ⊆ X with
v(A) = 1.

I The marginal function of player i is

∂iv(A) = v(A)− v(A \ {i}).
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Sequential random query process for simple games

I Sample uniformly without replacement until we have seen
enough players to have a winning coalition.

I The number Q of queries is at least k + 1 if and only if the
first k do not form a winning coalition.

I Hence Q is a random variable with expectation

E[Q(G)] = n+1−
n∑

k=1

P (random coalition of size k is winning).

I We can rescale to [0, 1] by a function F (n, k), and define
Q∗

F (G) := E[F (Q(G))].



Sequential random query process for simple games

I Sample uniformly without replacement until we have seen
enough players to have a winning coalition.

I The number Q of queries is at least k + 1 if and only if the
first k do not form a winning coalition.

I Hence Q is a random variable with expectation

E[Q(G)] = n+1−
n∑

k=1

P (random coalition of size k is winning).

I We can rescale to [0, 1] by a function F (n, k), and define
Q∗

F (G) := E[F (Q(G))].



Sequential random query process for simple games

I Sample uniformly without replacement until we have seen
enough players to have a winning coalition.

I The number Q of queries is at least k + 1 if and only if the
first k do not form a winning coalition.

I Hence Q is a random variable with expectation

E[Q(G)] = n+1−
n∑

k=1

P (random coalition of size k is winning).

I We can rescale to [0, 1] by a function F (n, k), and define
Q∗

F (G) := E[F (Q(G))].



Sequential random query process for simple games

I Sample uniformly without replacement until we have seen
enough players to have a winning coalition.

I The number Q of queries is at least k + 1 if and only if the
first k do not form a winning coalition.

I Hence Q is a random variable with expectation

E[Q(G)] = n+1−
n∑

k=1

P (random coalition of size k is winning).

I We can rescale to [0, 1] by a function F (n, k), and define
Q∗

F (G) := E[F (Q(G))].



Motivating example

I Devise a less crude measure of the manipulability of a voting
rule.

I The most commonly used measure simply gives 0 or 1 for a
given profile, depending on whether it is manipulable by some
coalition or not.

I A more sophisticated measure is the size of the minimum
manipulating coalition.

I We want to see how easy it would be to assemble a
manipulating coalition - the query model is one idea.

I Concrete example: Borda rule, 2 voters abc, 1 voter bac, 1
voter cba.
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Collective and individual measures

I The process is equivalently described via first choosing a
probability measure µn on {0, . . . , n}, sampling from it and
then choosing a subset of that size uniformly at random.

I The function Q∗
F (G) is a measure of decisiveness that

generalizes Coleman’s index.

I The marginal q∗F (G) of Q∗
F (G) is a power index.

I The simplest F (corresponding to uniformly choosing the size
of the subset) gives a new measure, that we call Q∗

0(G).

I Q∗
0(G) is the expected fraction of the maximum possible

number of queries saved when we sample as above.
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Generalization to TU-games

I The obvious definition is

Q∗
F (G) =

∑
S⊆X

(
n

|S|

)
µn(|S|)v(S)

and

q∗F (G) =
∑
S⊆X

(
n

|S|

)
µn(|S|)∂iv(S).

I The second is always a value (or allocation) that depends only
on the size of the subset.
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Name F (n, k) µn(k) Value on voting game

Coleman/Banzhaf 2−n
∑

j≥k

(
n
j

)
Bin(1/2) 3/4 = 0.75

Shapley 1−Hk−1/Hn Unif(1..n) 36/50 = 0.72
Q∗

0/q
∗
0 1− k/(n+ 1) Unif(0..n) 2/3 ≈ 0.67



Another connection to the Shapley value

I In applications of Shapley the grand coalition is always
winning and we seek to divide up the surplus.

I In some applications the grand coalition is not winning (e.g.
the voting game example above).

I If we allow this, our q∗F are precisely analogous to semivalues
and the characterization theorem of Dubey, Neyman & Weber
(1981) extends naturally.

I In this new model, q∗0 is the exact analog of the Shapley value.
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Future work

I An entire class of values/power indices and
potentials/decisiveness indices remains to be explored.

I Axiomatic characterization of these new values.

I Finding applications of new values such as q∗0. We give
applications to manipulability of voting rules. Perhaps
machine learning applications?

I Q∗
0 appears better than Coleman in discriminating between

simple games, and should be studied more.



Future work

I An entire class of values/power indices and
potentials/decisiveness indices remains to be explored.

I Axiomatic characterization of these new values.

I Finding applications of new values such as q∗0. We give
applications to manipulability of voting rules. Perhaps
machine learning applications?

I Q∗
0 appears better than Coleman in discriminating between

simple games, and should be studied more.



Future work

I An entire class of values/power indices and
potentials/decisiveness indices remains to be explored.

I Axiomatic characterization of these new values.

I Finding applications of new values such as q∗0. We give
applications to manipulability of voting rules. Perhaps
machine learning applications?

I Q∗
0 appears better than Coleman in discriminating between

simple games, and should be studied more.



Future work

I An entire class of values/power indices and
potentials/decisiveness indices remains to be explored.

I Axiomatic characterization of these new values.

I Finding applications of new values such as q∗0. We give
applications to manipulability of voting rules. Perhaps
machine learning applications?

I Q∗
0 appears better than Coleman in discriminating between

simple games, and should be studied more.


