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Preliminaries

Lecture plan

I An overview of results obtained over more than 10 years of
work with Robin Pemantle and others, explained in detail in
our book.

I Outline:

(i) Motivation, review of univariate case, overview of results (see
Chapter 1,2,3)

(ii) Big picture (topological) - no time for proofs today (see
Chapter 8)

(iii) Smooth point formulae - no time for multiple points today (see
Chapter 9,10)

(iv) Higher order terms (see Chapter 13)
(v) Beyond the combinatorial case (see Chapter 13)
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Introduction and motivation

Example (Some test problems)

I (Delannoy numbers — positive king walks in Z2)

F (x, y) = (1− x− y − xy)−1.

I (alignments — binary matrices used in bioinformatics)

F (z) =

(
2−

d∏
i=1

(1 + zi)

)−1
.

I (lemniscate — a second order linear recurrence)(
x2y2 − 2xy(x+ y) + 5 (x2 + y2) + 14xy − 20(x+ y) + 19

)−1
.

(no asymptotics today — see Chapter 10)
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Introduction and motivation

Overview

I In one variable, starting with a sequence ar of interest, we
form its generating function F (z). Cauchy’s integral theorem
allows us to express ar as an integral. The exponential growth
rate of ar is determined by the location of a dominant
singularity z∗ of F . More precise estimates depend on the
local geometry of the singular set V of F near z∗.

I In the multivariate case, all the above is still true. However,
we need to specify the direction in which we want asymptotics;
we then need to worry about uniformity; the definition of
“dominant” is a little different; the local geometry of V can
be much nastier; the local analysis is more complicated.
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Introduction and motivation

Standing assumptions

I Unless otherwise specified, the following hold throughout.

I We use boldface to denote a multi-index: z = (z1, . . . , zd),
r = (r1, . . . , rd). Similarly zr = zr11 . . . zrdd .

I A (multivariate) sequence is a function a : Nd → C for some
fixed d. Usually write ar instead of a(r).

I The generating function (GF) is the formal power series

F (z) =
∑
r∈Nd

arz
r.

I Assume F (z) = G(z)/H(z) where G,H are analytic (e.g.
polynomials).

I The combinatorial case: all ar ≥ 0. The aperiodic case: ar is
not supported on a proper sublattice of Nd.
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Introduction and motivation

Univariate case

Example (Univariate pole: derangements)

I Consider F (z) = e−z/(1− z), the GF for derangements.
There is a single pole, at z = 1. Using a circle of radius 1− ε
yields, by Cauchy’s theorem

ar =
1

2πi

∫
C1−ε

z−r−1F (z) dz

so that ar has exponential rate 0.

I By Cauchy’s residue theorem,

ar =
1

2πi

∫
C1+ε

z−r−1F (z) dz − Res(z−r−1F (z); z = 1).

I The integral is O((1 + ε)−r) while the residue equals −e−1.

I Thus [zr]F (z) ∼ e−1 as r →∞.
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Introduction and motivation

Univariate case

Example (Essential singularity: saddle point method)

I Here F (z) = exp(z). The Cauchy integral formula on a circle
CR of radius R gives an ≤ F (R)/Rn.

I Consider the “height function” logF (R)− n logR and try to
minimize over R. In this example, R = n is the minimum.

I The integral over Cn has most mass near z = n, so that

an =
F (n)

2πnn

∫ 2π

0
exp(−inθ)F (neiθ)

F (n)
dθ

≈ en

2πnn

∫ ε

−ε
exp

(
−inθ + logF (neiθ)− logF (n)

)
dθ.
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Univariate case

Example (Saddle point example continued)

I The Maclaurin expansion yields

−inθ + logF (neiθ)− logF (n) = −nθ2/2 +O(nθ3).

I This gives, with bn = 2πnne−nan, Laplace’s approximation:

bn ≈
∫ ε

−ε
exp(−nθ2/2) dθ ≈

∫ ∞
−∞

exp(−nθ2/2) dθ =
√

2π/n.

I This recaptures Stirling’s approximation, since n! = 1/an:

n! ∼ nne−n
√

2πn.
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Introduction and motivation

Multivariate case

Multivariate asymptotics — some quotations

I (Bender 1974) “Practically nothing is known about
asymptotics for recursions in two variables even when a GF is
available. Techniques for obtaining asymptotics from bivariate
GFs would be quite useful.”

I (Odlyzko 1995) “A major difficulty in estimating the
coefficients of mvGFs is that the geometry of the problem is
far more difficult. . . . Even rational multivariate functions are
not easy to deal with.”

I (Flajolet/Sedgewick 2009) “Roughly, we regard here a
bivariate GF as a collection of univariate GFs . . . .”

I We aimed to improve the multivariate situation.
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Multivariate case

First try: diagonal method

I Suppose that d = 2 and we want asymptotics from F (z, w)
on the diagonal r = s.

I The diagonal GF is F1,1(x) =
∑

n annx
n.

I We can compute, for some circle γx around t = 0,

F1,1(x) = [t0]F (x/t, t)

=
1

2πi

∫
γx

F (x/t, t)

t
dt

=
∑
k

Res(F (x/t, t)/t; t = sk(x))

where sk(x) is a singularity satisfying limx→0 sk(x) = 0.

I If F is rational, then F1,1 is algebraic.
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Introduction and motivation

Multivariate case

Why not use the diagonal method?

I For general apn,qn we could try to compute the diagonal GF
Fpq(z) :=

∑
n≥0 apn,qnz

n as above (requires simple change of
variable).

I This works fairly well for p = q = 1, but is generally a bad
idea (see Chapter 13.1):

I We can’t derive uniform asymptotics (if p/q changes slightly,
what do we do?).

I The computational complexity increases rapidly with p+ q.
I If d > 2, diagonals are not algebraic in general, even if F is

rational. Diagonals are holonomic and hence amenable to
analysis, but again computational complexity is a major
obstacle.

I Instead we use a direct approach based on Cauchy’s Integral
Formula in dimension d.
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what do we do?).

I The computational complexity increases rapidly with p+ q.
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rational. Diagonals are holonomic and hence amenable to
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Big picture - details omitted for lack of time

Cauchy integral formula

I We have

ar = (2πi)−d
∫
T
z−r−1F (z)dz

where dz = dz1 ∧ · · · ∧ dzd and T is a small torus around the
origin.

I We aim to replace T by a contour that is more suitable for
explicit computation. This may involve additional residue
terms.

I The homology of Cd \ V is the key to decomposing the
integral.

I To derive asymptotics, it is natural to try a saddle
point/steepest descent approach.
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Topological overview - stratified Morse theory

I Consider height function hr(z) = r · Re log(z), choose the
contour to minimize maxh.

I The Cauchy integral decomposes into a sum

ar =
∑
i

ni

∫
Ci

z−r−1F(z)dz + exponentially smaller stuff

where Ci is a quasi-local cycle near some critical point z∗
(i).

I Variety V has a Whitney stratification into finitely many cells,
each of which is a complex manifold of dimension k ≤ d− 1.
The top dimensional stratum is the set of smooth points.

I The critical points are those where the restriction of h to a
stratum has derivative zero.

I Key problem: find the highest critical points with nonzero ni.
These are the dominant ones.
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Computing the integral over Ci

I For each direction r in which we want asymptotics, the
dominant point depends on r.

I This point is generically a smooth point of V. We can also
handle multiple points and some other geometries.

I We write
∫
Ci

=
∫
A

∫
B and approximate the inner integral by a

residue.

I To compute
∫
A Res, convert to a Fourier-Laplace integral and

using a version of Laplace’s method to derive an asymptotic
expansion. The dominant point corresponds exactly to a
stationary point of the F-L integral.

I We can (with some effort) convert quantities in our formula
back to the original data.
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Asymptotics of Fourier-Laplace integrals

Difficulties with F-L asymptotics

I We consider for λ >> 0, where D ⊂ Rd

I(λ) =

∫
D

exp(−λf(x))A(x) dx.

I All authors assume at least one of the following:

I f decays exponentially on ∂D, or A vanishes there;
I ∂D is smooth;
I f is purely real, or purely imaginary;
I f has an isolated quadratically nondegenerate stationary point.

I Many of our applications to generating function asymptotics
do not fit into this framework. We needed to extend what is
known (see Chapter 5).



ACSV

Asymptotics of Fourier-Laplace integrals

Difficulties with F-L asymptotics

I We consider for λ >> 0, where D ⊂ Rd

I(λ) =

∫
D

exp(−λf(x))A(x) dx.

I All authors assume at least one of the following:

I f decays exponentially on ∂D, or A vanishes there;
I ∂D is smooth;
I f is purely real, or purely imaginary;
I f has an isolated quadratically nondegenerate stationary point.

I Many of our applications to generating function asymptotics
do not fit into this framework. We needed to extend what is
known (see Chapter 5).



ACSV

Asymptotics of Fourier-Laplace integrals

Difficulties with F-L asymptotics

I We consider for λ >> 0, where D ⊂ Rd

I(λ) =

∫
D

exp(−λf(x))A(x) dx.

I All authors assume at least one of the following:
I f decays exponentially on ∂D, or A vanishes there;

I ∂D is smooth;
I f is purely real, or purely imaginary;
I f has an isolated quadratically nondegenerate stationary point.

I Many of our applications to generating function asymptotics
do not fit into this framework. We needed to extend what is
known (see Chapter 5).



ACSV

Asymptotics of Fourier-Laplace integrals

Difficulties with F-L asymptotics

I We consider for λ >> 0, where D ⊂ Rd

I(λ) =

∫
D

exp(−λf(x))A(x) dx.

I All authors assume at least one of the following:
I f decays exponentially on ∂D, or A vanishes there;
I ∂D is smooth;

I f is purely real, or purely imaginary;
I f has an isolated quadratically nondegenerate stationary point.

I Many of our applications to generating function asymptotics
do not fit into this framework. We needed to extend what is
known (see Chapter 5).



ACSV

Asymptotics of Fourier-Laplace integrals

Difficulties with F-L asymptotics

I We consider for λ >> 0, where D ⊂ Rd

I(λ) =

∫
D

exp(−λf(x))A(x) dx.

I All authors assume at least one of the following:
I f decays exponentially on ∂D, or A vanishes there;
I ∂D is smooth;
I f is purely real, or purely imaginary;

I f has an isolated quadratically nondegenerate stationary point.

I Many of our applications to generating function asymptotics
do not fit into this framework. We needed to extend what is
known (see Chapter 5).



ACSV

Asymptotics of Fourier-Laplace integrals

Difficulties with F-L asymptotics

I We consider for λ >> 0, where D ⊂ Rd

I(λ) =

∫
D

exp(−λf(x))A(x) dx.

I All authors assume at least one of the following:
I f decays exponentially on ∂D, or A vanishes there;
I ∂D is smooth;
I f is purely real, or purely imaginary;
I f has an isolated quadratically nondegenerate stationary point.

I Many of our applications to generating function asymptotics
do not fit into this framework. We needed to extend what is
known (see Chapter 5).



ACSV

Asymptotics of Fourier-Laplace integrals

Difficulties with F-L asymptotics

I We consider for λ >> 0, where D ⊂ Rd

I(λ) =

∫
D

exp(−λf(x))A(x) dx.

I All authors assume at least one of the following:
I f decays exponentially on ∂D, or A vanishes there;
I ∂D is smooth;
I f is purely real, or purely imaginary;
I f has an isolated quadratically nondegenerate stationary point.

I Many of our applications to generating function asymptotics
do not fit into this framework. We needed to extend what is
known (see Chapter 5).



ACSV

Asymptotics of Fourier-Laplace integrals

Low-dimensional examples of F-L integrals
I Typical smooth point example looks like∫ 1

−1
e−λ(1+i)x

2
dx.

Isolated nondegenerate critical point, exponential decay

I Simplest double point example looks roughly like∫ 1

−1

∫ 1

0
e−λ(x

2+2ixy) dy dx.

Note Re f = 0 on x = 0, so rely on oscillation for smallness.
I Multiple point with n = 2, d = 1 gives integral like∫ 1

−1

∫ 1

0

∫ x

−x
e−λ(z

2+2izy) dy dx dz.

Simplex corners now intrude, continuum of critical points.
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Putting it together — general formulae

Logarithmic domain

I Let U be the domain of convergence of the power series F (z).
We write log U = {x ∈ Rd | ex ∈ U}, the logarithmic domain
of convergence. This is known to be convex.

I The cone spanned by normals to supporting hyperplanes at
x∗ ∈ logV we denote by K(z∗).

I If z∗ is smooth, this is a single ray determined by the image of
z∗ under the logarithmic Gauss map ∇logH.

I In the combinatorial case, for each r there is a dominant point
z∗(r) := exp(x∗) where x∗ ∈ ∂ logU . In the aperiodic case,
there are no more.

I Thus for each r we can find z∗(r), on the boundary of V and
in the positive orthant of Rd, that controls asymptotics in
direction r.
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log U for Delannoy example
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Putting it together — general formulae

Smooth formulae for general d

I z∗ turns out to be a critical point for r iff the outward normal
to logV is parallel to r. In other words, for some λ ∈ C, z∗
solves

∇logH(z) := (z1H1, . . . , zdHd) = λr, H(z) = 0.

I

ar ∼ z∗(r)−r

√
1

(2π|r|)(d−1)/2κ(z∗)

G(z∗)

| ∇logH(z∗)|

where |r| =
∑

i ri and κ is the Gaussian curvature of logV at
log z∗.

I The Gaussian curvature can be computed explicitly in terms
of derivatives of H to second order.
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Putting it together — general formulae

Example (Alignments)

I Recall F (z) =
∑
a(r1, . . . , rd)z

r = 1
2−

∏d
i=1(1+zi)

. Here V is

globally smooth, and GF is combinatorial and aperiodic.

I For example, for the main diagonal we have
z∗(1̄) = (21/d − 1)1 (by symmetry), so the number of
“square” alignments satisfies

a(n, n . . . , n) ∼ (21/d − 1)−dn
1

(21/d − 1)2(d2−1)/2d
√
d(πn)d−1

I Confirms a result of Griggs, Hanlon, Odlyzko & Waterman,
Graphs and Combinatorics 1990, with less work, and extends
to generalized alignments.
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Putting it together — general formulae

Important special case: Riordan arrays
I A Riordan array is a bivariate sequence with GF of the form

F (x, y) =
φ(x)

1− yv(x)
.

I Examples: many plane lattice walk models (Pascal, Catalan,
Motzkin, Schröder, etc); sums of IID random variables.

I In this case, if we define

µ(x) := xv′(x)/v(x)

σ2(x) := x2v′′(x)/v(x) + µ(x)− µ(x)2

the previous formula boils down (under minor extra
assumptions) to

ars ∼ (x∗)
−rv(x∗)

s φ(x∗)√
2πsσ2(x∗)

where x∗ satisfies µ(x∗) = r/s.
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Important special case: Riordan arrays
I A Riordan array is a bivariate sequence with GF of the form

F (x, y) =
φ(x)

1− yv(x)
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Putting it together — general formulae

Example (Delannoy walks)

I Recall that F (x, y) = (1− x− y − xy)−1. This is Riordan
with φ(x) = (1− x)−1 and v(x) = (1 + x)/(1− x). Here V is
globally smooth.

I Using the formula above we obtain (uniformly for r/s, s/r
away from 0)

ars ∼
[

r

∆− s

]r [ s

∆− r

]s√ rs

2π∆(r + s−∆)2
.

where ∆ =
√
r2 + s2.

I Extracting the diagonal is now easy: a7n,5n ∼ ACnn−1/2
where A ≈ 0.236839621050264, C ≈ 30952.9770838817.

I Compare Panholzer-Prodinger, Bull. Aust. Math. Soc. 2012.
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Putting it together — general formulae

Non-combinatorial case: bicolored supertrees

Example (highest critical point doesn’t contribute)

I Consider

F (x, y) =
2x2y(2x5y2 − 3x3y + x+ 2x2y − 1)

x5y2 + 2x2y − 2x3y + 4y + x− 2
.

for which we want asymptotics on the main diagonal. The
diagonal is combinatorial, but F is not.

I The critical points are, listed in increasing height,
(1 +

√
5, (3−

√
5)/16), (2, 18), (1−

√
5, (3 +

√
5)/16).

I In fact (2, 1/8) dominates.

I The answer:

ann ∼
4n
√

2Γ(5/4)

4π
n−5/4.
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Higher order terms

Higher order terms

I These are useful when:

I leading term cancels in deriving other formulae.
I leading term is zero because of numerator.
I we want accurate numerical approximations in non-asymptotic

regime.

I We can in principle differentiate implicitly and solve a system
of equations for each term in the asymptotic expansion.

I Hörmander has a completely explicit formula that proved
useful. There may be other ways.
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I Hörmander has a completely explicit formula that proved
useful. There may be other ways.



ACSV

Higher order terms

Higher order terms

I These are useful when:
I leading term cancels in deriving other formulae.
I leading term is zero because of numerator.
I we want accurate numerical approximations in non-asymptotic

regime.

I We can in principle differentiate implicitly and solve a system
of equations for each term in the asymptotic expansion.
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Higher order terms

Hörmander’s explicit formula
For an isolated nondegenerate stationary point in dimension d,

I(λ) ∼
(

det

(
λf ′′(0)

2π

))−1/2∑
k≥0

λ−kLk(A, f)

where Lk is a differential operator of order 2k evaluated at 0.
Specifically,

f(t) = f(t)− (1/2)tf ′′(0)tT

D =
∑
a,b

(f ′′(0)−1)a,b(−i∂a)(−i∂b)

Lk(A, f) =
∑
l≤2k

Dl+k(Af l)(0)

(−1)k2l+kl!(l + k)!
.
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Higher order terms

Example (nonoverlapping patterns)

I Given a word over alphabet {a1, . . . , ad}, players alternate
reading letters. If the last two letters are the same, we erase
the letters seen so far, and continue.

I For example, in abaabbba, there are two occurrences.

I How many such snaps are there, for random words?

I Answer: let ψn be the random variable counting snaps in
words of length n. Then as n→∞,

E(ψn) = (3/4)n− 15/32 +O(n−1)

σ2(ψn) = (9/32)n+O(1).
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Higher order terms

Example (snaps continued)

I The details are as follows. Consider W given by

W (x1, . . . , xd, y) =
A(x)

1− yB(x)

A(x) = 1/[1−
d∑
j=1

xj/(xj + 1)]

B(x) = 1− (1− e1(x))A(x)

e1(x) =

d∑
i=j

xj .

I The symbolic method shows that [xn1 . . . x
n
d , y

s]W (x, y)
counts words with n occurrences of each letter and s snaps.
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Higher order terms

Example (snaps continued)

We extract as usual. Note the first order cancellation in the
variance computation. For d = 3,

E(ψn) =
[xn1]∂W∂y (x, 1)

[xn1]W (x, 1)

= (3/4)n− 15/32 +O(n−1)

E(ψ2
n) =

[xn1]
(
∂2W
∂y2

(x, 1) + ∂W
∂y (x, 1)

)
[xn1]W (x, 1)

= (9/16)n2 − (27/64)n+O(1)

σ2(ψn) = E(ψ2
n)− E(ψn)2 = (9/32)n+O(1).
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Higher order terms

Example (Snaps with d = 3)

n 1 2 4 8
E(ψ) 0 1.000 2.509 5.521
(3/4)n 0.7500 1.500 3 6
(3/4)n− 15/32 0.2813 1.031 2.531 5.531
one-term relative error undefined 0.5000 0.1957 0.08685
two-term relative error undefined 0.03125 0.008832 0.001936
E(ψ2) 0 1.8000 7.496 32.80
(9/16)n2 0.5625 2.250 9 36
(9/16)n2 − (27/64)n 0.1406 1.406 7.312 32.63
one-term relative error undefined 0.2500 0.2006 0.09768
two-term relative error undefined 0.2188 0.02449 0.005220
σ2(ψ) 0 0.8000 1.201 2.320
(9/32)n 0.2813 0.5625 1.125 2.250
relative error undefined 0.2969 0.06294 0.03001
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Lifting to higher dimension

Inverting diagonalization

I Recall that the diagonal method shows that the diagonal of a
rational bivariate GF is algebraic.

I Conversely, every univariate algebraic GF is the diagonal of
some rational bivariate GF (next slide).

I The latter result does not generalize strictly to higher
dimensions, but something close to it is true. Our multivariate
framework means that increasing dimension causes no
difficulties in principle, so we can reduce to the rational case.

I The elementary diagonal of F (z0, . . . , zd) =
∑

r0,...,rd
arz

r is

diagF := f(z1, . . . , zd) =
∑

r1,...,rd

ar1,r1,...,rdz
r1
1 . . . zrdd .
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Lifting to higher dimension

Safonov’s basic construction
I Suppose that F is algebraic and its defining polynomial P

satisfies
P (w, z) = (w − F (z))ku(w, z)

where u(0, 0
¯
) 6= 0 and 1 ≤ k ∈ N.

I Define

R(z0, z) =
z20P1(z0, z0z1, z2, . . . )

kP (z0, z0z1, z2, . . . )

R̃(w, z) = R(w, z1/w, z2, . . . zd).

I The Argument Principle shows that F = diagR:

1

2πi

∫
C
R̃(w, z)

dw

w
=
∑

Res R̃(w, z) = F (z).

I Higher order terms are essential: the numerator of R̃ always
vanishes at the dominant point.
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Lifting to higher dimension

Safonov’s general construction

I In general, apply a sequence of blowups (monomial
substitutions) to reduce to the case above. This is a standard
idea from algebraic geometry: resolution of singularities.

I Definition: Let F (z) =
∑

r arz
r have d+ 1 variables and let

M be a d× d matrix with nonnegative entries. The
M -diagonal of F is the formal power series in d variables
whose coefficients are given by br2,...rd = as1,s1,s2,...sd and
(s1, . . . , sd) = (r1, . . . , rd)M .

I Theorem: Let f be an algebraic function of d variables. Then
there is a unimodular integer matrix M with positive entries
and a rational function F in d+ 1 variables such that f is the
M -diagonal of F .

I The example x
√

1− x− y shows that the elementary
diagonal cannot always be used.
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Lifting to higher dimension

Example (Narayana numbers)

I The bivariate GF F (x, y) for the Narayana numbers

ars =
1

r

(
r

s

)(
r − 1

s− 1

)
satisfies P (F (x, y), x, y) = 0, where

P (w, x, y) = w2 − w [1 + x(y − 1)] + xy

= [w − F (x, y)]
[
w − F (x, y)

]
.

where F is the algebraic conjugate.

I Using the above construction we obtain the lifting

G(u, x, y) =
u(1− 2u− ux(1− y))

1− u− xy − ux(1− y)
.

with brrs = ars.
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Lifting to higher dimension

Example (Narayana numbers continued)

I The above lifting yields asymptotics by smooth point analysis
in the usual way. The critical point equations yield

u = s/r, x =
(r − s)2

rs
, y =

s2

(r − s)2
.

and we obtain asymptotics starting with s−2. For example

a2s,s ∼
16s

8πs2
.

I Interestingly, specializing y = 1 commutes with lifting. Is this
always true?
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Lifting to higher dimension

Technical issues

I Safonov’s lifting often takes us away from the combinatorial
case. The Morse theory approach will probably be needed.

I Dominant singularities can be at infinity.

I There are other lifting procedures, some of which go from
dimension d to 2d. They seem complicated, and we have not
yet tried them in detail.

I However in some cases they work better - for example
2xy/(2 + x+ y) is a lifting of x

√
1− x, whereas Safonov’s

method appears not to work easily.
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Lifting to higher dimension

Further work

Research projects

I Systematically compare the computational efficiency of the
diagonal method and our methods. Being done by student of
Bruno Salvy (Lyon).

I Systematically derive asymptotics for lattice walks in the
quarter plane (in progress with Alin Bostan, INRIA).

I Develop a good theory for algebraic singularities (using
resolution of singularities somehow).

I Improve efficiency of algorithms for computing higher order
terms in expansions. Implement them in Sage.

I Make the computation of dominant points algorithmic in the
noncombinatorial case.
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