Analytic Combinatorics in Several Variables

Mark C. Wilson
Department of Computer Science University of Auckland

38ACCMCC, Wellington, 2014-12-05

Main references

- R. Pemantle and M.C. Wilson, Analytic Combinatorics in Several Variables, Cambridge University Press 2013. https://www.cs.auckland.ac.nz/~mcw/Research/mvGF/ asymultseq/ACSVbook/

Main references

- R. Pemantle and M.C. Wilson, Analytic Combinatorics in Several Variables, Cambridge University Press 2013. https://www.cs.auckland.ac.nz/~mcw/Research/mvGF/ asymultseq/ACSVbook/
- R. Pemantle and M.C. Wilson, Twenty Combinatorial Examples of Asymptotics Derived from Multivariate Generating Functions, SIAM Review 2008.

Main references

- R. Pemantle and M.C. Wilson, Analytic Combinatorics in Several Variables, Cambridge University Press 2013. https://www.cs.auckland.ac.nz/~mcw/Research/mvGF/ asymultseq/ACSVbook/
- R. Pemantle and M.C. Wilson, Twenty Combinatorial Examples of Asymptotics Derived from Multivariate Generating Functions, SIAM Review 2008.
- Sage implementations by Alex Raichev: https://github.com/araichev/amgf.

Lecture plan

- An overview of results obtained over more than 10 years of work with Robin Pemantle and others, explained in detail in our book.

Lecture plan

- An overview of results obtained over more than 10 years of work with Robin Pemantle and others, explained in detail in our book.
- Outline:

Lecture plan

- An overview of results obtained over more than 10 years of work with Robin Pemantle and others, explained in detail in our book.
- Outline:
(i) Motivation, review of univariate case, overview of results (see Chapter 1,2,3)

Lecture plan

- An overview of results obtained over more than 10 years of work with Robin Pemantle and others, explained in detail in our book.
- Outline:
(i) Motivation, review of univariate case, overview of results (see Chapter 1,2,3)
(ii) Big picture (topological) - no time for proofs today (see Chapter 8)

Lecture plan

- An overview of results obtained over more than 10 years of work with Robin Pemantle and others, explained in detail in our book.
- Outline:
(i) Motivation, review of univariate case, overview of results (see Chapter 1,2,3)
(ii) Big picture (topological) - no time for proofs today (see Chapter 8)
(iii) Smooth point formulae - no time for multiple points today (see Chapter 9,10)

Lecture plan

- An overview of results obtained over more than 10 years of work with Robin Pemantle and others, explained in detail in our book.
- Outline:
(i) Motivation, review of univariate case, overview of results (see Chapter 1,2,3)
(ii) Big picture (topological) - no time for proofs today (see Chapter 8)
(iii) Smooth point formulae - no time for multiple points today (see Chapter 9,10)
(iv) Higher order terms (see Chapter 13)

Lecture plan

- An overview of results obtained over more than 10 years of work with Robin Pemantle and others, explained in detail in our book.
- Outline:
(i) Motivation, review of univariate case, overview of results (see Chapter 1,2,3)
(ii) Big picture (topological) - no time for proofs today (see Chapter 8)
(iii) Smooth point formulae - no time for multiple points today (see Chapter 9,10)
(iv) Higher order terms (see Chapter 13)
(v) Beyond the combinatorial case (see Chapter 13)

Example (Some test problems)

- (Delannoy numbers - positive king walks in \mathbb{Z}^{2})

$$
F(x, y)=(1-x-y-x y)^{-1}
$$

Example (Some test problems)

- (Delannoy numbers - positive king walks in \mathbb{Z}^{2})

$$
F(x, y)=(1-x-y-x y)^{-1}
$$

- (alignments - binary matrices used in bioinformatics)

$$
F(\mathbf{z})=\left(2-\prod_{i=1}^{d}\left(1+z_{i}\right)\right)^{-1}
$$

Example (Some test problems)

- (Delannoy numbers - positive king walks in \mathbb{Z}^{2})

$$
F(x, y)=(1-x-y-x y)^{-1}
$$

- (alignments - binary matrices used in bioinformatics)

$$
F(\mathbf{z})=\left(2-\prod_{i=1}^{d}\left(1+z_{i}\right)\right)^{-1}
$$

- (lemniscate - a second order linear recurrence)

$$
\left(x^{2} y^{2}-2 x y(x+y)+5\left(x^{2}+y^{2}\right)+14 x y-20(x+y)+19\right)^{-1}
$$

(no asymptotics today - see Chapter 10)

Overview

- In one variable, starting with a sequence a_{r} of interest, we form its generating function $F(\mathbf{z})$. Cauchy's integral theorem allows us to express $a_{\mathbf{r}}$ as an integral. The exponential growth rate of a_{r} is determined by the location of a dominant singularity \mathbf{z}_{*} of F. More precise estimates depend on the local geometry of the singular set \mathcal{V} of F near \mathbf{z}_{*}.

Overview

- In one variable, starting with a sequence a_{r} of interest, we form its generating function $F(\mathbf{z})$. Cauchy's integral theorem allows us to express $a_{\mathbf{r}}$ as an integral. The exponential growth rate of $a_{\mathbf{r}}$ is determined by the location of a dominant singularity \mathbf{z}_{*} of F. More precise estimates depend on the local geometry of the singular set \mathcal{V} of F near \mathbf{z}_{*}.
- In the multivariate case, all the above is still true. However, we need to specify the direction in which we want asymptotics; we then need to worry about uniformity; the definition of "dominant" is a little different; the local geometry of \mathcal{V} can be much nastier; the local analysis is more complicated.
$\left\llcorner_{\text {Introduction and motivation }}\right.$

Standing assumptions

- Unless otherwise specified, the following hold throughout.

L Introduction and motivation

Standing assumptions

- Unless otherwise specified, the following hold throughout.
- We use boldface to denote a multi-index: $\mathbf{z}=\left(z_{1}, \ldots, z_{d}\right)$, $\mathbf{r}=\left(r_{1}, \ldots, r_{d}\right)$. Similarly $\mathbf{z}^{\mathbf{r}}=z_{1}^{r_{1}} \ldots z_{d}^{r_{d}}$.

Standing assumptions

- Unless otherwise specified, the following hold throughout.
- We use boldface to denote a multi-index: $\mathbf{z}=\left(z_{1}, \ldots, z_{d}\right)$, $\mathbf{r}=\left(r_{1}, \ldots, r_{d}\right)$. Similarly $\mathbf{z}^{\mathbf{r}}=z_{1}^{r_{1}} \ldots z_{d}^{r_{d}}$.
- A (multivariate) sequence is a function $a: \mathbb{N}^{d} \rightarrow \mathbb{C}$ for some fixed d. Usually write $a_{\mathbf{r}}$ instead of $a(\mathbf{r})$.

Standing assumptions

- Unless otherwise specified, the following hold throughout.
- We use boldface to denote a multi-index: $\mathbf{z}=\left(z_{1}, \ldots, z_{d}\right)$, $\mathbf{r}=\left(r_{1}, \ldots, r_{d}\right)$. Similarly $\mathbf{z}^{\mathbf{r}}=z_{1}^{r_{1}} \ldots z_{d}^{r_{d}}$.
- A (multivariate) sequence is a function $a: \mathbb{N}^{d} \rightarrow \mathbb{C}$ for some fixed d. Usually write $a_{\mathbf{r}}$ instead of $a(\mathbf{r})$.
- The generating function (GF) is the formal power series

$$
F(\mathbf{z})=\sum_{\mathbf{r} \in \mathbb{N}^{d}} a_{\mathbf{r}} \mathbf{z}^{\mathbf{r}}
$$

Standing assumptions

- Unless otherwise specified, the following hold throughout.
- We use boldface to denote a multi-index: $\mathbf{z}=\left(z_{1}, \ldots, z_{d}\right)$, $\mathbf{r}=\left(r_{1}, \ldots, r_{d}\right)$. Similarly $\mathbf{z}^{\mathbf{r}}=z_{1}^{r_{1}} \ldots z_{d}^{r_{d}}$.
- A (multivariate) sequence is a function $a: \mathbb{N}^{d} \rightarrow \mathbb{C}$ for some fixed d. Usually write $a_{\mathbf{r}}$ instead of $a(\mathbf{r})$.
- The generating function (GF) is the formal power series

$$
F(\mathbf{z})=\sum_{\mathbf{r} \in \mathbb{N}^{d}} a_{\mathbf{r}} \mathbf{z}^{\mathbf{r}}
$$

- Assume $F(\mathbf{z})=G(\mathbf{z}) / H(\mathbf{z})$ where G, H are analytic (e.g. polynomials).

Standing assumptions

- Unless otherwise specified, the following hold throughout.
- We use boldface to denote a multi-index: $\mathbf{z}=\left(z_{1}, \ldots, z_{d}\right)$, $\mathbf{r}=\left(r_{1}, \ldots, r_{d}\right)$. Similarly $\mathbf{z}^{\mathbf{r}}=z_{1}^{r_{1}} \ldots z_{d}^{r_{d}}$.
- A (multivariate) sequence is a function $a: \mathbb{N}^{d} \rightarrow \mathbb{C}$ for some fixed d. Usually write $a_{\mathbf{r}}$ instead of $a(\mathbf{r})$.
- The generating function (GF) is the formal power series

$$
F(\mathbf{z})=\sum_{\mathbf{r} \in \mathbb{N}^{d}} a_{\mathbf{r}} \mathbf{z}^{\mathbf{r}}
$$

- Assume $F(\mathbf{z})=G(\mathbf{z}) / H(\mathbf{z})$ where G, H are analytic (e.g. polynomials).
- The combinatorial case: all $a_{\mathbf{r}} \geq 0$. The aperiodic case: $a_{\mathbf{r}}$ is not supported on a proper sublattice of \mathbb{N}^{d}.

Example (Univariate pole: derangements)

- Consider $F(z)=e^{-z} /(1-z)$, the GF for derangements. There is a single pole, at $z=1$. Using a circle of radius $1-\varepsilon$ yields, by Cauchy's theorem

$$
a_{r}=\frac{1}{2 \pi i} \int_{C_{1-\varepsilon}} z^{-r-1} F(z) d z
$$

so that a_{r} has exponential rate 0 .

Example (Univariate pole: derangements)

- Consider $F(z)=e^{-z} /(1-z)$, the GF for derangements. There is a single pole, at $z=1$. Using a circle of radius $1-\varepsilon$ yields, by Cauchy's theorem

$$
a_{r}=\frac{1}{2 \pi i} \int_{C_{1-\varepsilon}} z^{-r-1} F(z) d z
$$

so that a_{r} has exponential rate 0 .

- By Cauchy's residue theorem,

$$
a_{r}=\frac{1}{2 \pi i} \int_{C_{1+\varepsilon}} z^{-r-1} F(z) d z-\operatorname{Res}\left(z^{-r-1} F(z) ; z=1\right)
$$

Example (Univariate pole: derangements)

- Consider $F(z)=e^{-z} /(1-z)$, the GF for derangements.

There is a single pole, at $z=1$. Using a circle of radius $1-\varepsilon$ yields, by Cauchy's theorem

$$
a_{r}=\frac{1}{2 \pi i} \int_{C_{1-\varepsilon}} z^{-r-1} F(z) d z
$$

so that a_{r} has exponential rate 0 .

- By Cauchy's residue theorem,

$$
a_{r}=\frac{1}{2 \pi i} \int_{C_{1+\varepsilon}} z^{-r-1} F(z) d z-\operatorname{Res}\left(z^{-r-1} F(z) ; z=1\right)
$$

- The integral is $O\left((1+\varepsilon)^{-r}\right)$ while the residue equals $-e^{-1}$.

Example (Univariate pole: derangements)

- Consider $F(z)=e^{-z} /(1-z)$, the GF for derangements.

There is a single pole, at $z=1$. Using a circle of radius $1-\varepsilon$ yields, by Cauchy's theorem

$$
a_{r}=\frac{1}{2 \pi i} \int_{C_{1-\varepsilon}} z^{-r-1} F(z) d z
$$

so that a_{r} has exponential rate 0 .

- By Cauchy's residue theorem,

$$
a_{r}=\frac{1}{2 \pi i} \int_{C_{1+\varepsilon}} z^{-r-1} F(z) d z-\operatorname{Res}\left(z^{-r-1} F(z) ; z=1\right)
$$

- The integral is $O\left((1+\varepsilon)^{-r}\right)$ while the residue equals $-e^{-1}$.
- Thus $\left[z^{r}\right] F(z) \sim e^{-1}$ as $r \rightarrow \infty$.

Example (Essential singularity: saddle point method)

- Here $F(z)=\exp (z)$. The Cauchy integral formula on a circle C_{R} of radius R gives $a_{n} \leq F(R) / R^{n}$.

Example (Essential singularity: saddle point method)

- Here $F(z)=\exp (z)$. The Cauchy integral formula on a circle C_{R} of radius R gives $a_{n} \leq F(R) / R^{n}$.
- Consider the "height function" $\log F(R)-n \log R$ and try to minimize over R. In this example, $R=n$ is the minimum.

Example (Essential singularity: saddle point method)

- Here $F(z)=\exp (z)$. The Cauchy integral formula on a circle C_{R} of radius R gives $a_{n} \leq F(R) / R^{n}$.
- Consider the "height function" $\log F(R)-n \log R$ and try to minimize over R. In this example, $R=n$ is the minimum.
- The integral over C_{n} has most mass near $z=n$, so that

$$
\begin{aligned}
a_{n} & =\frac{F(n)}{2 \pi n^{n}} \int_{0}^{2 \pi} \exp (-i n \theta) \frac{F\left(n e^{i \theta}\right)}{F(n)} d \theta \\
& \approx \frac{e^{n}}{2 \pi n^{n}} \int_{-\varepsilon}^{\varepsilon} \exp \left(-i n \theta+\log F\left(n e^{i \theta}\right)-\log F(n)\right) d \theta
\end{aligned}
$$

Example (Saddle point example continued)

- The Maclaurin expansion yields

$$
-i n \theta+\log F\left(n e^{i \theta}\right)-\log F(n)=-n \theta^{2} / 2+O\left(n \theta^{3}\right)
$$

Example (Saddle point example continued)

- The Maclaurin expansion yields

$$
-i n \theta+\log F\left(n e^{i \theta}\right)-\log F(n)=-n \theta^{2} / 2+O\left(n \theta^{3}\right)
$$

- This gives, with $b_{n}=2 \pi n^{n} e^{-n} a_{n}$, Laplace's approximation:

$$
b_{n} \approx \int_{-\varepsilon}^{\varepsilon} \exp \left(-n \theta^{2} / 2\right) d \theta \approx \int_{-\infty}^{\infty} \exp \left(-n \theta^{2} / 2\right) d \theta=\sqrt{2 \pi / n}
$$

Example (Saddle point example continued)

- The Maclaurin expansion yields

$$
-i n \theta+\log F\left(n e^{i \theta}\right)-\log F(n)=-n \theta^{2} / 2+O\left(n \theta^{3}\right)
$$

- This gives, with $b_{n}=2 \pi n^{n} e^{-n} a_{n}$, Laplace's approximation:

$$
b_{n} \approx \int_{-\varepsilon}^{\varepsilon} \exp \left(-n \theta^{2} / 2\right) d \theta \approx \int_{-\infty}^{\infty} \exp \left(-n \theta^{2} / 2\right) d \theta=\sqrt{2 \pi / n}
$$

- This recaptures Stirling's approximation, since $n!=1 / a_{n}$:

$$
n!\sim n^{n} e^{-n} \sqrt{2 \pi n}
$$

Multivariate asymptotics - some quotations

- (Bender 1974) "Practically nothing is known about asymptotics for recursions in two variables even when a GF is available. Techniques for obtaining asymptotics from bivariate GFs would be quite useful."

Multivariate asymptotics - some quotations

- (Bender 1974) "Practically nothing is known about asymptotics for recursions in two variables even when a GF is available. Techniques for obtaining asymptotics from bivariate GFs would be quite useful."
- (Odlyzko 1995) "A major difficulty in estimating the coefficients of mvGFs is that the geometry of the problem is far more difficult. ... Even rational multivariate functions are not easy to deal with."

Multivariate asymptotics - some quotations

- (Bender 1974) "Practically nothing is known about asymptotics for recursions in two variables even when a GF is available. Techniques for obtaining asymptotics from bivariate GFs would be quite useful."
- (Odlyzko 1995) "A major difficulty in estimating the coefficients of mvGFs is that the geometry of the problem is far more difficult. ... Even rational multivariate functions are not easy to deal with."
- (Flajolet/Sedgewick 2009) "Roughly, we regard here a bivariate GF as a collection of univariate GFs"

Multivariate asymptotics - some quotations

- (Bender 1974) "Practically nothing is known about asymptotics for recursions in two variables even when a GF is available. Techniques for obtaining asymptotics from bivariate GFs would be quite useful."
- (Odlyzko 1995) "A major difficulty in estimating the coefficients of mvGFs is that the geometry of the problem is far more difficult. ... Even rational multivariate functions are not easy to deal with."
- (Flajolet/Sedgewick 2009) "Roughly, we regard here a bivariate GF as a collection of univariate GFs"
- We aimed to improve the multivariate situation.

ACSV

L Introduction and motivation

- Multivariate case

First try: diagonal method

- Suppose that $d=2$ and we want asymptotics from $F(z, w)$ on the diagonal $r=s$.

ACSV

L Introduction and motivation
$\square_{\text {Multivariate case }}$

First try: diagonal method

- Suppose that $d=2$ and we want asymptotics from $F(z, w)$ on the diagonal $r=s$.
- The diagonal GF is $F_{1,1}(x)=\sum_{n} a_{n n} x^{n}$.

ACSV

First try: diagonal method

- Suppose that $d=2$ and we want asymptotics from $F(z, w)$ on the diagonal $r=s$.
- The diagonal GF is $F_{1,1}(x)=\sum_{n} a_{n n} x^{n}$.
- We can compute, for some circle γ_{x} around $t=0$,

$$
\begin{aligned}
F_{1,1}(x) & =\left[t^{0}\right] F(x / t, t) \\
& =\frac{1}{2 \pi i} \int_{\gamma_{x}} \frac{F(x / t, t)}{t} d t \\
& =\sum_{k} \operatorname{Res}\left(F(x / t, t) / t ; t=s_{k}(x)\right)
\end{aligned}
$$

where $s_{k}(x)$ is a singularity satisfying $\lim _{x \rightarrow 0} s_{k}(x)=0$.

ACSV

First try: diagonal method

- Suppose that $d=2$ and we want asymptotics from $F(z, w)$ on the diagonal $r=s$.
- The diagonal GF is $F_{1,1}(x)=\sum_{n} a_{n n} x^{n}$.
- We can compute, for some circle γ_{x} around $t=0$,

$$
\begin{aligned}
F_{1,1}(x) & =\left[t^{0}\right] F(x / t, t) \\
& =\frac{1}{2 \pi i} \int_{\gamma_{x}} \frac{F(x / t, t)}{t} d t \\
& =\sum_{k} \operatorname{Res}\left(F(x / t, t) / t ; t=s_{k}(x)\right)
\end{aligned}
$$

where $s_{k}(x)$ is a singularity satisfying $\lim _{x \rightarrow 0} s_{k}(x)=0$.

- If F is rational, then $F_{1,1}$ is algebraic.

ACSV

L Introduction and motivation

- Multivariate case

Why not use the diagonal method?

- For general $a_{p n, q n}$ we could try to compute the diagonal GF $F_{p q}(z):=\sum_{n \geq 0} a_{p n, q n} z^{n}$ as above (requires simple change of variable).

ACSV

$L_{\text {Introduction and motivation }}$

- Multivariate case

Why not use the diagonal method?

- For general $a_{p n, q n}$ we could try to compute the diagonal GF $F_{p q}(z):=\sum_{n \geq 0} a_{p n, q n} z^{n}$ as above (requires simple change of variable).
- This works fairly well for $p=q=1$, but is generally a bad idea (see Chapter 13.1):

ACSV

Why not use the diagonal method?

- For general $a_{p n, q n}$ we could try to compute the diagonal GF $F_{p q}(z):=\sum_{n \geq 0} a_{p n, q n} z^{n}$ as above (requires simple change of variable).
- This works fairly well for $p=q=1$, but is generally a bad idea (see Chapter 13.1):
- We can't derive uniform asymptotics (if p / q changes slightly, what do we do?).

ACSV

Why not use the diagonal method?

- For general $a_{p n, q n}$ we could try to compute the diagonal GF $F_{p q}(z):=\sum_{n \geq 0} a_{p n, q n} z^{n}$ as above (requires simple change of variable).
- This works fairly well for $p=q=1$, but is generally a bad idea (see Chapter 13.1):
- We can't derive uniform asymptotics (if p / q changes slightly, what do we do?).
- The computational complexity increases rapidly with $p+q$.

Why not use the diagonal method?

- For general $a_{p n, q n}$ we could try to compute the diagonal GF $F_{p q}(z):=\sum_{n \geq 0} a_{p n, q n} z^{n}$ as above (requires simple change of variable).
- This works fairly well for $p=q=1$, but is generally a bad idea (see Chapter 13.1):
- We can't derive uniform asymptotics (if p / q changes slightly, what do we do?).
- The computational complexity increases rapidly with $p+q$.
- If $d>2$, diagonals are not algebraic in general, even if F is rational. Diagonals are holonomic and hence amenable to analysis, but again computational complexity is a major obstacle.

Why not use the diagonal method?

- For general $a_{p n, q n}$ we could try to compute the diagonal GF $F_{p q}(z):=\sum_{n \geq 0} a_{p n, q n} z^{n}$ as above (requires simple change of variable).
- This works fairly well for $p=q=1$, but is generally a bad idea (see Chapter 13.1):
- We can't derive uniform asymptotics (if p / q changes slightly, what do we do?).
- The computational complexity increases rapidly with $p+q$.
- If $d>2$, diagonals are not algebraic in general, even if F is rational. Diagonals are holonomic and hence amenable to analysis, but again computational complexity is a major obstacle.
- Instead we use a direct approach based on Cauchy's Integral Formula in dimension d.

ACSV

$\left\llcorner_{\text {Big picture - details omitted for lack of time }}\right.$

Cauchy integral formula

- We have

$$
a_{\mathbf{r}}=(2 \pi i)^{-d} \int_{T} \mathbf{z}^{-\mathbf{r}-\mathbf{1}} F(\mathbf{z}) \mathbf{d} \mathbf{z}
$$

where $\mathbf{d z}=d z_{1} \wedge \cdots \wedge d z_{d}$ and T is a small torus around the origin.

ACSV

$\left\llcorner_{\text {Big picture - details omitted for lack of time }}\right.$

Cauchy integral formula

- We have

$$
a_{\mathbf{r}}=(2 \pi i)^{-d} \int_{T} \mathbf{z}^{-\mathbf{r}-\mathbf{1}} F(\mathbf{z}) \mathbf{d} \mathbf{z}
$$

where $\mathbf{d z}=d z_{1} \wedge \cdots \wedge d z_{d}$ and T is a small torus around the origin.

- We aim to replace T by a contour that is more suitable for explicit computation. This may involve additional residue terms.

Cauchy integral formula

- We have

$$
a_{\mathbf{r}}=(2 \pi i)^{-d} \int_{T} \mathbf{z}^{-\mathbf{r}-\mathbf{1}} F(\mathbf{z}) \mathbf{d} \mathbf{z}
$$

where $\mathbf{d z}=d z_{1} \wedge \cdots \wedge d z_{d}$ and T is a small torus around the origin.

- We aim to replace T by a contour that is more suitable for explicit computation. This may involve additional residue terms.
- The homology of $\mathbb{C}^{d} \backslash \mathcal{V}$ is the key to decomposing the integral.

Cauchy integral formula

- We have

$$
a_{\mathbf{r}}=(2 \pi i)^{-d} \int_{T} \mathbf{z}^{-\mathbf{r}-\mathbf{1}} F(\mathbf{z}) \mathbf{d} \mathbf{z}
$$

where $\mathbf{d z}=d z_{1} \wedge \cdots \wedge d z_{d}$ and T is a small torus around the origin.

- We aim to replace T by a contour that is more suitable for explicit computation. This may involve additional residue terms.
- The homology of $\mathbb{C}^{d} \backslash \mathcal{V}$ is the key to decomposing the integral.
- To derive asymptotics, it is natural to try a saddle point/steepest descent approach.

ACSV

$\left\llcorner_{\text {Big picture - details omitted for lack of time }}\right.$

Topological overview - stratified Morse theory

- Consider height function $h_{\overline{\mathbf{r}}}(\mathbf{z})=\overline{\mathbf{r}} \cdot \operatorname{Re} \log (\mathbf{z})$, choose the contour to minimize max h.

Topological overview - stratified Morse theory

- Consider height function $h_{\overline{\mathbf{r}}}(\mathbf{z})=\overline{\mathbf{r}} \cdot \operatorname{Re} \log (\mathbf{z})$, choose the contour to minimize max h.
- The Cauchy integral decomposes into a sum
$a_{\mathbf{r}}=\sum_{i} n_{i} \int_{C_{i}} \mathbf{z}^{-\mathbf{r}-\mathbf{1}} \mathbf{F}(\mathbf{z}) \mathbf{d z}+$ exponentially smaller stuff where C_{i} is a quasi-local cycle near some critical point $\mathbf{z}_{*}{ }^{(i)}$.

Topological overview - stratified Morse theory

- Consider height function $h_{\overline{\mathbf{r}}}(\mathbf{z})=\overline{\mathbf{r}} \cdot \operatorname{Re} \log (\mathbf{z})$, choose the contour to minimize $\max h$.
- The Cauchy integral decomposes into a sum

$$
a_{\mathbf{r}}=\sum_{i} n_{i} \int_{C_{i}} \mathbf{z}^{-\mathbf{r}-\mathbf{1}} \mathbf{F}(\mathbf{z}) \mathbf{d} \mathbf{z}+\text { exponentially smaller stuff }
$$

where C_{i} is a quasi-local cycle near some critical point $\mathbf{z}_{*}{ }^{(i)}$.

- Variety \mathcal{V} has a Whitney stratification into finitely many cells, each of which is a complex manifold of dimension $k \leq d-1$. The top dimensional stratum is the set of smooth points.

Topological overview - stratified Morse theory

- Consider height function $h_{\overline{\mathbf{r}}}(\mathbf{z})=\overline{\mathbf{r}} \cdot \operatorname{Re} \log (\mathbf{z})$, choose the contour to minimize $\max h$.
- The Cauchy integral decomposes into a sum

$$
a_{\mathbf{r}}=\sum_{i} n_{i} \int_{C_{i}} \mathbf{z}^{-\mathbf{r}-\mathbf{1}} \mathbf{F}(\mathbf{z}) \mathbf{d} \mathbf{z}+\text { exponentially smaller stuff }
$$

where C_{i} is a quasi-local cycle near some critical point $\mathbf{z}_{*}{ }^{(i)}$.

- Variety \mathcal{V} has a Whitney stratification into finitely many cells, each of which is a complex manifold of dimension $k \leq d-1$. The top dimensional stratum is the set of smooth points.
- The critical points are those where the restriction of h to a stratum has derivative zero.

Topological overview - stratified Morse theory

- Consider height function $h_{\overline{\mathbf{r}}}(\mathbf{z})=\overline{\mathbf{r}} \cdot \operatorname{Re} \log (\mathbf{z})$, choose the contour to minimize $\max h$.
- The Cauchy integral decomposes into a sum

$$
a_{\mathbf{r}}=\sum_{i} n_{i} \int_{C_{i}} \mathbf{z}^{-\mathbf{r}-\mathbf{1}} \mathbf{F}(\mathbf{z}) \mathbf{d z}+\text { exponentially smaller stuff }
$$

where C_{i} is a quasi-local cycle near some critical point $\mathbf{z}_{*}{ }^{(i)}$.

- Variety \mathcal{V} has a Whitney stratification into finitely many cells, each of which is a complex manifold of dimension $k \leq d-1$. The top dimensional stratum is the set of smooth points.
- The critical points are those where the restriction of h to a stratum has derivative zero.
- Key problem: find the highest critical points with nonzero n_{i}. These are the dominant ones.

ACSV

$\left\llcorner_{\text {Big picture - details omitted for lack of time }}\right.$

Computing the integral over C_{i}

- For each direction $\overline{\mathbf{r}}$ in which we want asymptotics, the dominant point depends on $\overline{\mathbf{r}}$.

Computing the integral over C_{i}

- For each direction $\overline{\mathbf{r}}$ in which we want asymptotics, the dominant point depends on $\overline{\mathbf{r}}$.
- This point is generically a smooth point of \mathcal{V}. We can also handle multiple points and some other geometries.

Computing the integral over C_{i}

- For each direction $\overline{\mathbf{r}}$ in which we want asymptotics, the dominant point depends on $\overline{\mathbf{r}}$.
- This point is generically a smooth point of \mathcal{V}. We can also handle multiple points and some other geometries.
- We write $\int_{C_{i}}=\int_{A} \int_{B}$ and approximate the inner integral by a residue.

Computing the integral over C_{i}

- For each direction $\overline{\mathbf{r}}$ in which we want asymptotics, the dominant point depends on $\overline{\mathbf{r}}$.
- This point is generically a smooth point of \mathcal{V}. We can also handle multiple points and some other geometries.
- We write $\int_{C_{i}}=\int_{A} \int_{B}$ and approximate the inner integral by a residue.
- To compute \int_{A} Res, convert to a Fourier-Laplace integral and using a version of Laplace's method to derive an asymptotic expansion. The dominant point corresponds exactly to a stationary point of the F-L integral.

Computing the integral over C_{i}

- For each direction $\overline{\mathbf{r}}$ in which we want asymptotics, the dominant point depends on $\overline{\mathbf{r}}$.
- This point is generically a smooth point of \mathcal{V}. We can also handle multiple points and some other geometries.
- We write $\int_{C_{i}}=\int_{A} \int_{B}$ and approximate the inner integral by a residue.
- To compute \int_{A} Res, convert to a Fourier-Laplace integral and using a version of Laplace's method to derive an asymptotic expansion. The dominant point corresponds exactly to a stationary point of the F-L integral.
- We can (with some effort) convert quantities in our formula back to the original data.

Difficulties with F-L asymptotics

- We consider for $\lambda \gg 0$, where $D \subset \mathbb{R}^{d}$

$$
I(\lambda)=\int_{D} \exp (-\lambda f(\mathbf{x})) A(\mathbf{x}) d \mathbf{x}
$$

Difficulties with F-L asymptotics

- We consider for $\lambda \gg 0$, where $D \subset \mathbb{R}^{d}$

$$
I(\lambda)=\int_{D} \exp (-\lambda f(\mathbf{x})) A(\mathbf{x}) d \mathbf{x}
$$

- All authors assume at least one of the following:
$\left\llcorner_{\text {Asymptotics of Fourier-Laplace integrals }}\right.$

Difficulties with F-L asymptotics

- We consider for $\lambda \gg 0$, where $D \subset \mathbb{R}^{d}$

$$
I(\lambda)=\int_{D} \exp (-\lambda f(\mathbf{x})) A(\mathbf{x}) d \mathbf{x}
$$

- All authors assume at least one of the following:
- f decays exponentially on ∂D, or A vanishes there;
$\left\llcorner_{\text {Asymptotics of Fourier-Laplace integrals }}\right.$

Difficulties with F-L asymptotics

- We consider for $\lambda \gg 0$, where $D \subset \mathbb{R}^{d}$

$$
I(\lambda)=\int_{D} \exp (-\lambda f(\mathbf{x})) A(\mathbf{x}) d \mathbf{x}
$$

- All authors assume at least one of the following:
- f decays exponentially on ∂D, or A vanishes there;
- ∂D is smooth;
$\left\llcorner_{\text {Asymptotics of Fourier-Laplace integrals }}\right.$

Difficulties with F-L asymptotics

- We consider for $\lambda \gg 0$, where $D \subset \mathbb{R}^{d}$

$$
I(\lambda)=\int_{D} \exp (-\lambda f(\mathbf{x})) A(\mathbf{x}) d \mathbf{x}
$$

- All authors assume at least one of the following:
- f decays exponentially on ∂D, or A vanishes there;
- ∂D is smooth;
- f is purely real, or purely imaginary;

Difficulties with F-L asymptotics

- We consider for $\lambda \gg 0$, where $D \subset \mathbb{R}^{d}$

$$
I(\lambda)=\int_{D} \exp (-\lambda f(\mathbf{x})) A(\mathbf{x}) d \mathbf{x}
$$

- All authors assume at least one of the following:
- f decays exponentially on ∂D, or A vanishes there;
- ∂D is smooth;
- f is purely real, or purely imaginary;
- f has an isolated quadratically nondegenerate stationary point.

Difficulties with F-L asymptotics

- We consider for $\lambda \gg 0$, where $D \subset \mathbb{R}^{d}$

$$
I(\lambda)=\int_{D} \exp (-\lambda f(\mathbf{x})) A(\mathbf{x}) d \mathbf{x}
$$

- All authors assume at least one of the following:
- f decays exponentially on ∂D, or A vanishes there;
- ∂D is smooth;
- f is purely real, or purely imaginary;
- f has an isolated quadratically nondegenerate stationary point.
- Many of our applications to generating function asymptotics do not fit into this framework. We needed to extend what is known (see Chapter 5).

Low-dimensional examples of F-L integrals

- Typical smooth point example looks like

$$
\int_{-1}^{1} e^{-\lambda(1+i) x^{2}} d x
$$

Isolated nondegenerate critical point, exponential decay

Low-dimensional examples of F-L integrals

- Typical smooth point example looks like

$$
\int_{-1}^{1} e^{-\lambda(1+i) x^{2}} d x
$$

Isolated nondegenerate critical point, exponential decay

- Simplest double point example looks roughly like

$$
\int_{-1}^{1} \int_{0}^{1} e^{-\lambda\left(x^{2}+2 i x y\right)} d y d x
$$

Note $\operatorname{Re} f=0$ on $x=0$, so rely on oscillation for smallness.

Low-dimensional examples of F-L integrals

- Typical smooth point example looks like

$$
\int_{-1}^{1} e^{-\lambda(1+i) x^{2}} d x
$$

Isolated nondegenerate critical point, exponential decay

- Simplest double point example looks roughly like

$$
\int_{-1}^{1} \int_{0}^{1} e^{-\lambda\left(x^{2}+2 i x y\right)} d y d x
$$

Note $\operatorname{Re} f=0$ on $x=0$, so rely on oscillation for smallness.

- Multiple point with $n=2, d=1$ gives integral like

$$
\int_{-1}^{1} \int_{0}^{1} \int_{-x}^{x} e^{-\lambda\left(z^{2}+2 i z y\right)} d y d x d z
$$

Simplex corners now intrude, continuum of critical points.

Logarithmic domain

- Let U be the domain of convergence of the power series $F(\mathbf{z})$. We write $\log \mathrm{U}=\left\{\mathbf{x} \in \mathbb{R}^{d} \mid e^{\mathbf{x}} \in U\right\}$, the logarithmic domain of convergence. This is known to be convex.

Logarithmic domain

- Let U be the domain of convergence of the power series $F(\mathbf{z})$. We write $\log \mathrm{U}=\left\{\mathbf{x} \in \mathbb{R}^{d} \mid e^{\mathbf{x}} \in U\right\}$, the logarithmic domain of convergence. This is known to be convex.
- The cone spanned by normals to supporting hyperplanes at $\mathbf{x}^{*} \in \log \mathcal{V}$ we denote by $\mathrm{K}\left(\mathbf{z}_{*}\right)$.

Logarithmic domain

- Let U be the domain of convergence of the power series $F(\mathbf{z})$. We write $\log \mathrm{U}=\left\{\mathbf{x} \in \mathbb{R}^{d} \mid e^{\mathbf{x}} \in U\right\}$, the logarithmic domain of convergence. This is known to be convex.
- The cone spanned by normals to supporting hyperplanes at $\mathrm{x}^{*} \in \log \mathcal{V}$ we denote by $\mathrm{K}\left(\mathbf{z}_{*}\right)$.
- If \mathbf{z}_{*} is smooth, this is a single ray determined by the image of \mathbf{z}_{*} under the logarithmic Gauss map $\nabla_{\log } H$.

Logarithmic domain

- Let U be the domain of convergence of the power series $F(\mathbf{z})$. We write $\log \mathrm{U}=\left\{\mathbf{x} \in \mathbb{R}^{d} \mid e^{\mathbf{x}} \in U\right\}$, the logarithmic domain of convergence. This is known to be convex.
- The cone spanned by normals to supporting hyperplanes at $\mathbf{x}^{*} \in \log \mathcal{V}$ we denote by $\mathrm{K}\left(\mathbf{z}_{*}\right)$.
- If \mathbf{z}_{*} is smooth, this is a single ray determined by the image of \mathbf{z}_{*} under the logarithmic Gauss map $\nabla_{\log } H$.
- In the combinatorial case, for each $\overline{\mathbf{r}}$ there is a dominant point $\mathbf{z}_{*}(\overline{\mathbf{r}}):=\exp \left(\mathbf{x}_{*}\right)$ where $\mathbf{x}_{*} \in \partial \log U$. In the aperiodic case, there are no more.

Logarithmic domain

- Let U be the domain of convergence of the power series $F(\mathbf{z})$. We write $\log \mathrm{U}=\left\{\mathbf{x} \in \mathbb{R}^{d} \mid e^{\mathbf{x}} \in U\right\}$, the logarithmic domain of convergence. This is known to be convex.
- The cone spanned by normals to supporting hyperplanes at $\mathrm{x}^{*} \in \log \mathcal{V}$ we denote by $\mathrm{K}\left(\mathbf{z}_{*}\right)$.
- If \mathbf{z}_{*} is smooth, this is a single ray determined by the image of \mathbf{z}_{*} under the logarithmic Gauss map $\nabla_{\log } H$.
- In the combinatorial case, for each $\overline{\mathbf{r}}$ there is a dominant point $\mathbf{z}_{*}(\overline{\mathbf{r}}):=\exp \left(\mathbf{x}_{*}\right)$ where $\mathbf{x}_{*} \in \partial \log U$. In the aperiodic case, there are no more.
- Thus for each $\overline{\mathbf{r}}$ we can find $\mathbf{z}_{*}(\overline{\mathbf{r}})$, on the boundary of \mathcal{V} and in the positive orthant of \mathbb{R}^{d}, that controls asymptotics in direction $\overline{\mathbf{r}}$.
\llcorner Putting it together - general formulae
$\log \mathrm{U}$ for Delannoy example

\measuredangle Putting it together - general formulae

\mathcal{V} and $\log \mathrm{U}$ for leminiscate example

Smooth formulae for general d

- \mathbf{z}_{*} turns out to be a critical point for $\overline{\mathbf{r}}$ iff the outward normal to $\log \mathcal{V}$ is parallel to \mathbf{r}. In other words, for some $\lambda \in \mathbb{C}, \mathbf{z}_{*}$ solves

$$
\nabla_{\log } H(\mathbf{z}):=\left(z_{1} H_{1}, \ldots, z_{d} H_{d}\right)=\lambda \mathbf{r}, H(\mathbf{z})=\mathbf{0}
$$

Smooth formulae for general d

- \mathbf{z}_{*} turns out to be a critical point for $\overline{\mathbf{r}}$ iff the outward normal to $\log \mathcal{V}$ is parallel to \mathbf{r}. In other words, for some $\lambda \in \mathbb{C}, \mathbf{z}_{*}$ solves

$$
\nabla_{\log } H(\mathbf{z}):=\left(z_{1} H_{1}, \ldots, z_{d} H_{d}\right)=\lambda \mathbf{r}, H(\mathbf{z})=\mathbf{0} .
$$

$$
a_{\mathbf{r}} \sim \mathbf{z}_{*}(\overline{\mathbf{r}})^{-\mathbf{r}} \sqrt{\frac{1}{(2 \pi|\mathbf{r}|)^{(d-1) / 2} \kappa\left(\mathbf{z}_{*}\right)}} \frac{G\left(\mathbf{z}_{*}\right)}{\left|\nabla_{\log } H\left(\mathbf{z}_{*}\right)\right|}
$$

where $|\mathbf{r}|=\sum_{i} r_{i}$ and κ is the Gaussian curvature of $\log \mathcal{V}$ at $\log \mathbf{z}_{*}$.

Smooth formulae for general d

- \mathbf{z}_{*} turns out to be a critical point for $\overline{\mathbf{r}}$ iff the outward normal to $\log \mathcal{V}$ is parallel to \mathbf{r}. In other words, for some $\lambda \in \mathbb{C}, \mathbf{z}_{*}$ solves

$$
\begin{aligned}
& \nabla_{\log } H(\mathbf{z}):=\left(z_{1} H_{1}, \ldots, z_{d} H_{d}\right)=\lambda \mathbf{r}, H(\mathbf{z})=\mathbf{0} . \\
& a_{\mathbf{r}} \sim \mathbf{z}_{*}(\overline{\mathbf{r}})^{-\mathbf{r}} \sqrt{\frac{1}{(2 \pi|\mathbf{r}|)^{(d-1) / 2} \kappa\left(\mathbf{z}_{*}\right)}} \frac{G\left(\mathbf{z}_{*}\right)}{\left|\nabla_{\log } H\left(\mathbf{z}_{*}\right)\right|}
\end{aligned}
$$

where $|\mathbf{r}|=\sum_{i} r_{i}$ and κ is the Gaussian curvature of $\log \mathcal{V}$ at $\log \mathbf{z}_{*}$.

- The Gaussian curvature can be computed explicitly in terms of derivatives of H to second order.

Example (Alignments)

- Recall $F(\mathbf{z})=\sum a\left(r_{1}, \ldots, r_{d}\right) \mathbf{z}^{\mathbf{r}}=\frac{1}{2-\prod_{i=1}^{d}\left(1+z_{i}\right)}$. Here \mathcal{V} is globally smooth, and GF is combinatorial and aperiodic.

Example (Alignments)

- Recall $F(\mathbf{z})=\sum a\left(r_{1}, \ldots, r_{d}\right) \mathbf{z}^{\mathbf{r}}=\frac{1}{2-\prod_{i=1}^{d}\left(1+z_{i}\right)}$. Here \mathcal{V} is globally smooth, and GF is combinatorial and aperiodic.
- For example, for the main diagonal we have
$\mathbf{z}_{*}(\overline{\mathbf{1}})=\left(2^{1 / d}-1\right) \mathbf{1}$ (by symmetry), so the number of "square" alignments satisfies

$$
a(n, n \ldots, n) \sim\left(2^{1 / d}-1\right)^{-d n} \frac{1}{\left(2^{1 / d}-1\right) 2^{\left(d^{2}-1\right) / 2 d} \sqrt{d(\pi n)^{d-1}}}
$$

Example (Alignments)

- Recall $F(\mathbf{z})=\sum a\left(r_{1}, \ldots, r_{d}\right) \mathbf{z}^{\mathbf{r}}=\frac{1}{2-\prod_{i=1}^{d}\left(1+z_{i}\right)}$. Here \mathcal{V} is globally smooth, and GF is combinatorial and aperiodic.
- For example, for the main diagonal we have $\mathbf{z}_{*}(\overline{\mathbf{1}})=\left(2^{1 / d}-1\right) \mathbf{1}$ (by symmetry), so the number of "square" alignments satisfies

$$
a(n, n \ldots, n) \sim\left(2^{1 / d}-1\right)^{-d n} \frac{1}{\left(2^{1 / d}-1\right) 2^{\left(d^{2}-1\right) / 2 d} \sqrt{d(\pi n)^{d-1}}}
$$

- Confirms a result of Griggs, Hanlon, Odlyzko \& Waterman, Graphs and Combinatorics 1990, with less work, and extends to generalized alignments.

ACSV

ᄂPutting it together - general formulae

Important special case: Riordan arrays

- A Riordan array is a bivariate sequence with GF of the form

$$
F(x, y)=\frac{\phi(x)}{1-y v(x)}
$$

Important special case: Riordan arrays

- A Riordan array is a bivariate sequence with GF of the form

$$
F(x, y)=\frac{\phi(x)}{1-y v(x)}
$$

- Examples: many plane lattice walk models (Pascal, Catalan, Motzkin, Schröder, etc); sums of IID random variables.

Important special case: Riordan arrays

- A Riordan array is a bivariate sequence with GF of the form

$$
F(x, y)=\frac{\phi(x)}{1-y v(x)} .
$$

- Examples: many plane lattice walk models (Pascal, Catalan, Motzkin, Schröder, etc); sums of IID random variables.
- In this case, if we define

$$
\begin{aligned}
\mu(x) & :=x v^{\prime}(x) / v(x) \\
\sigma^{2}(x) & :=x^{2} v^{\prime \prime}(x) / v(x)+\mu(x)-\mu(x)^{2}
\end{aligned}
$$

the previous formula boils down (under minor extra assumptions) to

$$
a_{r s} \sim\left(x_{*}\right)^{-r} v\left(x_{*}\right)^{s} \frac{\phi\left(x_{*}\right)}{\sqrt{2 \pi s \sigma^{2}\left(x_{*}\right)}}
$$

where x_{*} satisfies $\mu\left(x_{*}\right)=r / s$.

Example (Delannoy walks)

- Recall that $F(x, y)=(1-x-y-x y)^{-1}$. This is Riordan with $\phi(x)=(1-x)^{-1}$ and $v(x)=(1+x) /(1-x)$. Here \mathcal{V} is globally smooth.

Example (Delannoy walks)

- Recall that $F(x, y)=(1-x-y-x y)^{-1}$. This is Riordan with $\phi(x)=(1-x)^{-1}$ and $v(x)=(1+x) /(1-x)$. Here \mathcal{V} is globally smooth.
- Using the formula above we obtain (uniformly for $r / s, s / r$ away from 0)

$$
a_{r s} \sim\left[\frac{r}{\Delta-s}\right]^{r}\left[\frac{s}{\Delta-r}\right]^{s} \sqrt{\frac{r s}{2 \pi \Delta(r+s-\Delta)^{2}}} .
$$

where $\Delta=\sqrt{r^{2}+s^{2}}$.

Example (Delannoy walks)

- Recall that $F(x, y)=(1-x-y-x y)^{-1}$. This is Riordan with $\phi(x)=(1-x)^{-1}$ and $v(x)=(1+x) /(1-x)$. Here \mathcal{V} is globally smooth.
- Using the formula above we obtain (uniformly for $r / s, s / r$ away from 0)

$$
a_{r s} \sim\left[\frac{r}{\Delta-s}\right]^{r}\left[\frac{s}{\Delta-r}\right]^{s} \sqrt{\frac{r s}{2 \pi \Delta(r+s-\Delta)^{2}}} .
$$

where $\Delta=\sqrt{r^{2}+s^{2}}$.

- Extracting the diagonal is now easy: $a_{7 n, 5 n} \sim A C^{n} n^{-1 / 2}$ where $A \approx 0.236839621050264$, $C \approx 30952.9770838817$.

Example (Delannoy walks)

- Recall that $F(x, y)=(1-x-y-x y)^{-1}$. This is Riordan with $\phi(x)=(1-x)^{-1}$ and $v(x)=(1+x) /(1-x)$. Here \mathcal{V} is globally smooth.
- Using the formula above we obtain (uniformly for $r / s, s / r$ away from 0)

$$
a_{r s} \sim\left[\frac{r}{\Delta-s}\right]^{r}\left[\frac{s}{\Delta-r}\right]^{s} \sqrt{\frac{r s}{2 \pi \Delta(r+s-\Delta)^{2}}}
$$

where $\Delta=\sqrt{r^{2}+s^{2}}$.

- Extracting the diagonal is now easy: $a_{7 n, 5 n} \sim A C^{n} n^{-1 / 2}$ where $A \approx 0.236839621050264, \quad C \approx 30952.9770838817$.
- Compare Panholzer-Prodinger, Bull. Aust. Math. Soc. 2012.

Non-combinatorial case: bicolored supertrees

Example (highest critical point doesn't contribute)

- Consider

$$
F(x, y)=\frac{2 x^{2} y\left(2 x^{5} y^{2}-3 x^{3} y+x+2 x^{2} y-1\right)}{x^{5} y^{2}+2 x^{2} y-2 x^{3} y+4 y+x-2}
$$

for which we want asymptotics on the main diagonal. The diagonal is combinatorial, but F is not.

Non-combinatorial case: bicolored supertrees

Example (highest critical point doesn't contribute)

- Consider

$$
F(x, y)=\frac{2 x^{2} y\left(2 x^{5} y^{2}-3 x^{3} y+x+2 x^{2} y-1\right)}{x^{5} y^{2}+2 x^{2} y-2 x^{3} y+4 y+x-2}
$$

for which we want asymptotics on the main diagonal. The diagonal is combinatorial, but F is not.

- The critical points are, listed in increasing height, $(1+\sqrt{5},(3-\sqrt{5}) / 16),\left(2, \frac{1}{8}\right),(1-\sqrt{5},(3+\sqrt{5}) / 16)$.

Non-combinatorial case: bicolored supertrees

Example (highest critical point doesn't contribute)

- Consider

$$
F(x, y)=\frac{2 x^{2} y\left(2 x^{5} y^{2}-3 x^{3} y+x+2 x^{2} y-1\right)}{x^{5} y^{2}+2 x^{2} y-2 x^{3} y+4 y+x-2}
$$

for which we want asymptotics on the main diagonal. The diagonal is combinatorial, but F is not.

- The critical points are, listed in increasing height, $(1+\sqrt{5},(3-\sqrt{5}) / 16),\left(2, \frac{1}{8}\right),(1-\sqrt{5},(3+\sqrt{5}) / 16)$.
- In fact $(2,1 / 8)$ dominates.

Non-combinatorial case: bicolored supertrees

Example (highest critical point doesn't contribute)

- Consider

$$
F(x, y)=\frac{2 x^{2} y\left(2 x^{5} y^{2}-3 x^{3} y+x+2 x^{2} y-1\right)}{x^{5} y^{2}+2 x^{2} y-2 x^{3} y+4 y+x-2}
$$

for which we want asymptotics on the main diagonal. The diagonal is combinatorial, but F is not.

- The critical points are, listed in increasing height, $(1+\sqrt{5},(3-\sqrt{5}) / 16),\left(2, \frac{1}{8}\right),(1-\sqrt{5},(3+\sqrt{5}) / 16)$.
- In fact $(2,1 / 8)$ dominates.
- The answer:

$$
a_{n n} \sim \frac{4^{n} \sqrt{2} \Gamma(5 / 4)}{4 \pi} n^{-5 / 4}
$$

Higher order terms

- These are useful when:

Higher order terms

- These are useful when:
- leading term cancels in deriving other formulae.
$\left\llcorner_{\text {Higher order terms }}\right.$

Higher order terms

- These are useful when:
- leading term cancels in deriving other formulae.
- leading term is zero because of numerator.

Higher order terms

- These are useful when:
- leading term cancels in deriving other formulae.
- leading term is zero because of numerator.
- we want accurate numerical approximations in non-asymptotic regime.

Higher order terms

- These are useful when:
- leading term cancels in deriving other formulae.
- leading term is zero because of numerator.
- we want accurate numerical approximations in non-asymptotic regime.
- We can in principle differentiate implicitly and solve a system of equations for each term in the asymptotic expansion.

Higher order terms

- These are useful when:
- leading term cancels in deriving other formulae.
- leading term is zero because of numerator.
- we want accurate numerical approximations in non-asymptotic regime.
- We can in principle differentiate implicitly and solve a system of equations for each term in the asymptotic expansion.
- Hörmander has a completely explicit formula that proved useful. There may be other ways.

Hörmander's explicit formula

For an isolated nondegenerate stationary point in dimension d,

$$
I(\lambda) \sim\left(\operatorname{det}\left(\frac{\lambda f^{\prime \prime}(\mathbf{0})}{2 \pi}\right)\right)^{-1 / 2} \sum_{k \geq 0} \lambda^{-k} L_{k}(A, f)
$$

where L_{k} is a differential operator of order $2 k$ evaluated at $\mathbf{0}$. Specifically,

$$
\begin{aligned}
\underline{f}(t) & =f(t)-(1 / 2) t f^{\prime \prime}(0) t^{T} \\
\mathcal{D} & =\sum_{a, b}\left(f^{\prime \prime}(\mathbf{0})^{-1}\right)_{a, b}\left(-\mathrm{i} \partial_{a}\right)\left(-\mathrm{i} \partial_{b}\right) \\
L_{k}(A, f) & =\sum_{l \leq 2 k} \frac{\mathcal{D}^{l+k}\left(A \underline{f}^{l}\right)(0)}{(-1)^{k} 2^{l+k} l!(l+k)!} .
\end{aligned}
$$

Example (nonoverlapping patterns)

- Given a word over alphabet $\left\{a_{1}, \ldots, a_{d}\right\}$, players alternate reading letters. If the last two letters are the same, we erase the letters seen so far, and continue.

Example (nonoverlapping patterns)

- Given a word over alphabet $\left\{a_{1}, \ldots, a_{d}\right\}$, players alternate reading letters. If the last two letters are the same, we erase the letters seen so far, and continue.
- For example, in $a b a a b b b a$, there are two occurrences.

Example (nonoverlapping patterns)

- Given a word over alphabet $\left\{a_{1}, \ldots, a_{d}\right\}$, players alternate reading letters. If the last two letters are the same, we erase the letters seen so far, and continue.
- For example, in abaabbba, there are two occurrences.
- How many such snaps are there, for random words?

Example (nonoverlapping patterns)

- Given a word over alphabet $\left\{a_{1}, \ldots, a_{d}\right\}$, players alternate reading letters. If the last two letters are the same, we erase the letters seen so far, and continue.
- For example, in abaabbba, there are two occurrences.
- How many such snaps are there, for random words?
- Answer: let ψ_{n} be the random variable counting snaps in words of length n. Then as $n \rightarrow \infty$,

$$
\begin{aligned}
\mathbb{E}\left(\psi_{n}\right) & =(3 / 4) n-15 / 32+O\left(n^{-1}\right) \\
\sigma^{2}\left(\psi_{n}\right) & =(9 / 32) n+O(1)
\end{aligned}
$$

Example (snaps continued)

- The details are as follows. Consider W given by

$$
\begin{aligned}
W\left(x_{1}, \ldots, x_{d}, y\right) & =\frac{A(x)}{1-y B(x)} \\
A(x) & =1 /\left[1-\sum_{j=1}^{d} x_{j} /\left(x_{j}+1\right)\right] \\
B(x) & =1-\left(1-e_{1}(x)\right) A(x) \\
e_{1}(x) & =\sum_{i=j}^{d} x_{j}
\end{aligned}
$$

Example (snaps continued)

- The details are as follows. Consider W given by

$$
\begin{aligned}
W\left(x_{1}, \ldots, x_{d}, y\right) & =\frac{A(x)}{1-y B(x)} \\
A(x) & =1 /\left[1-\sum_{j=1}^{d} x_{j} /\left(x_{j}+1\right)\right] \\
B(x) & =1-\left(1-e_{1}(x)\right) A(x) \\
e_{1}(x) & =\sum_{i=j}^{d} x_{j}
\end{aligned}
$$

- The symbolic method shows that $\left[x_{1}^{n} \ldots x_{d}^{n}, y^{s}\right] W(\mathbf{x}, y)$ counts words with n occurrences of each letter and s snaps.

Example (snaps continued)

We extract as usual. Note the first order cancellation in the variance computation. For $d=3$,

$$
\begin{aligned}
\mathbb{E}\left(\psi_{n}\right) & =\frac{\left[x^{n \mathbf{1}}\right] \frac{\partial W}{\partial y}(x, 1)}{\left[x^{n \mathbf{1}}\right] W(x, 1)} \\
& =(3 / 4) n-15 / 32+O\left(n^{-1}\right) \\
\mathbb{E}\left(\psi_{n}^{2}\right) & =\frac{\left[x^{n \mathbf{1}}\right]\left(\frac{\partial^{2} W}{\partial y^{2}}(x, 1)+\frac{\partial W}{\partial y}(x, 1)\right)}{\left[x^{n \mathbf{1}}\right] W(x, 1)} \\
& =(9 / 16) n^{2}-(27 / 64) n+O(1) \\
\sigma^{2}\left(\psi_{n}\right) & =\mathbb{E}\left(\psi_{n}^{2}\right)-\mathbb{E}\left(\psi_{n}\right)^{2}=(9 / 32) n+O(1)
\end{aligned}
$$

Example (Snaps with $d=3$)

n	1	2	4	8
$\mathbb{E}(\psi)$	0	1.000	2.509	5.521
$(3 / 4) n$	0.7500	1.500	3	6
$(3 / 4) n-15 / 32$	0.2813	1.031	2.531	5.531
one-term relative error	undefined	0.5000	0.1957	0.08685
two-term relative error	undefined	0.03125	0.008832	0.001936
$\mathbb{E}\left(\psi^{2}\right)$	0	1.8000	7.496	32.80
$(9 / 16) n^{2}$	0.5625	2.250	9	36
$(9 / 16) n^{2}-(27 / 64) n$	0.1406	1.406	7.312	32.63
one-term relative error	undefined	0.2500	0.2006	0.09768
two-term relative error	undefined	0.2188	0.02449	0.005220
$\sigma^{2}(\psi)$	0	0.8000	1.201	2.320
$(9 / 32) n$	0.2813	0.5625	1.125	2.250
relative error	undefined	0.2969	0.06294	0.03001

Inverting diagonalization

- Recall that the diagonal method shows that the diagonal of a rational bivariate GF is algebraic.

Inverting diagonalization

- Recall that the diagonal method shows that the diagonal of a rational bivariate GF is algebraic.
- Conversely, every univariate algebraic GF is the diagonal of some rational bivariate GF (next slide).

Inverting diagonalization

- Recall that the diagonal method shows that the diagonal of a rational bivariate GF is algebraic.
- Conversely, every univariate algebraic GF is the diagonal of some rational bivariate GF (next slide).
- The latter result does not generalize strictly to higher dimensions, but something close to it is true. Our multivariate framework means that increasing dimension causes no difficulties in principle, so we can reduce to the rational case.

Inverting diagonalization

- Recall that the diagonal method shows that the diagonal of a rational bivariate GF is algebraic.
- Conversely, every univariate algebraic GF is the diagonal of some rational bivariate GF (next slide).
- The latter result does not generalize strictly to higher dimensions, but something close to it is true. Our multivariate framework means that increasing dimension causes no difficulties in principle, so we can reduce to the rational case.
- The elementary diagonal of $F\left(z_{0}, \ldots, z_{d}\right)=\sum_{r_{0}, \ldots, r_{d}} a_{\mathbf{r}} \mathbf{z}^{\mathbf{r}}$ is

$$
\operatorname{diag} F:=f\left(z_{1}, \ldots, z_{d}\right)=\sum_{r_{1}, \ldots, r_{d}} a_{r_{1}, r_{1}, \ldots, r_{d}} z_{1}^{r_{1}} \ldots z_{d}^{r_{d}}
$$

Lifting to higher dimension

Safonov's basic construction

- Suppose that F is algebraic and its defining polynomial P satisfies

$$
P(w, \mathbf{z})=(w-F(\mathbf{z}))^{k} u(w, \mathbf{z})
$$

where $u(0, \underline{0}) \neq 0$ and $1 \leq k \in \mathbb{N}$.

Safonov's basic construction

- Suppose that F is algebraic and its defining polynomial P satisfies

$$
P(w, \mathbf{z})=(w-F(\mathbf{z}))^{k} u(w, \mathbf{z})
$$

where $u(0, \underline{0}) \neq 0$ and $1 \leq k \in \mathbb{N}$.

- Define

$$
\begin{aligned}
R\left(z_{0}, \mathbf{z}\right) & =\frac{z_{0}^{2} P_{1}\left(z_{0}, z_{0} z_{1}, z_{2}, \ldots\right)}{k P\left(z_{0}, z_{0} z_{1}, z_{2}, \ldots\right)} \\
\tilde{R}(w, \mathbf{z}) & =R\left(w, z_{1} / w, z_{2}, \ldots z_{d}\right)
\end{aligned}
$$

Safonov's basic construction

- Suppose that F is algebraic and its defining polynomial P satisfies

$$
P(w, \mathbf{z})=(w-F(\mathbf{z}))^{k} u(w, \mathbf{z})
$$

where $u(0, \underline{0}) \neq 0$ and $1 \leq k \in \mathbb{N}$.

- Define

$$
\begin{aligned}
R\left(z_{0}, \mathbf{z}\right) & =\frac{z_{0}^{2} P_{1}\left(z_{0}, z_{0} z_{1}, z_{2}, \ldots\right)}{k P\left(z_{0}, z_{0} z_{1}, z_{2}, \ldots\right)} \\
\tilde{R}(w, \mathbf{z}) & =R\left(w, z_{1} / w, z_{2}, \ldots z_{d}\right)
\end{aligned}
$$

- The Argument Principle shows that $F=\operatorname{diag} R$:

$$
\frac{1}{2 \pi i} \int_{C} \tilde{R}(w, \mathbf{z}) \frac{d w}{w}=\sum \operatorname{Res} \tilde{R}(w, \mathbf{z})=F(\mathbf{z})
$$

Safonov's basic construction

- Suppose that F is algebraic and its defining polynomial P satisfies

$$
P(w, \mathbf{z})=(w-F(\mathbf{z}))^{k} u(w, \mathbf{z})
$$

where $u(0, \underline{0}) \neq 0$ and $1 \leq k \in \mathbb{N}$.

- Define

$$
\begin{aligned}
R\left(z_{0}, \mathbf{z}\right) & =\frac{z_{0}^{2} P_{1}\left(z_{0}, z_{0} z_{1}, z_{2}, \ldots\right)}{k P\left(z_{0}, z_{0} z_{1}, z_{2}, \ldots\right)} \\
\tilde{R}(w, \mathbf{z}) & =R\left(w, z_{1} / w, z_{2}, \ldots z_{d}\right)
\end{aligned}
$$

- The Argument Principle shows that $F=\operatorname{diag} R$:

$$
\frac{1}{2 \pi i} \int_{C} \tilde{R}(w, \mathbf{z}) \frac{d w}{w}=\sum \operatorname{Res} \tilde{R}(w, \mathbf{z})=F(\mathbf{z})
$$

- Higher order terms are essential: the numerator of \tilde{R} always vanishes at the dominant point.

Safonov's general construction

- In general, apply a sequence of blowups (monomial substitutions) to reduce to the case above. This is a standard idea from algebraic geometry: resolution of singularities.

Safonov's general construction

- In general, apply a sequence of blowups (monomial substitutions) to reduce to the case above. This is a standard idea from algebraic geometry: resolution of singularities.
- Definition: Let $F(\mathbf{z})=\sum_{\mathbf{r}} a_{\mathbf{r}} \mathbf{z}^{\mathbf{r}}$ have $d+1$ variables and let M be a $d \times d$ matrix with nonnegative entries. The M-diagonal of F is the formal power series in d variables whose coefficients are given by $b_{r_{2}, \ldots r_{d}}=a_{s_{1}, s_{1}, s_{2}, \ldots s_{d}}$ and $\left(s_{1}, \ldots, s_{d}\right)=\left(r_{1}, \ldots, r_{d}\right) M$.

Safonov's general construction

- In general, apply a sequence of blowups (monomial substitutions) to reduce to the case above. This is a standard idea from algebraic geometry: resolution of singularities.
- Definition: Let $F(\mathbf{z})=\sum_{\mathbf{r}} a_{\mathbf{r}} \mathbf{z}^{\mathbf{r}}$ have $d+1$ variables and let M be a $d \times d$ matrix with nonnegative entries. The M-diagonal of F is the formal power series in d variables whose coefficients are given by $b_{r_{2}, \ldots r_{d}}=a_{s_{1}, s_{1}, s_{2}, \ldots s_{d}}$ and $\left(s_{1}, \ldots, s_{d}\right)=\left(r_{1}, \ldots, r_{d}\right) M$.
- Theorem: Let f be an algebraic function of d variables. Then there is a unimodular integer matrix M with positive entries and a rational function F in $d+1$ variables such that f is the M-diagonal of F.

Safonov's general construction

- In general, apply a sequence of blowups (monomial substitutions) to reduce to the case above. This is a standard idea from algebraic geometry: resolution of singularities.
- Definition: Let $F(\mathbf{z})=\sum_{\mathbf{r}} a_{\mathbf{r}} \mathbf{z}^{\mathbf{r}}$ have $d+1$ variables and let M be a $d \times d$ matrix with nonnegative entries. The M-diagonal of F is the formal power series in d variables whose coefficients are given by $b_{r_{2}, \ldots r_{d}}=a_{s_{1}, s_{1}, s_{2}, \ldots s_{d}}$ and $\left(s_{1}, \ldots, s_{d}\right)=\left(r_{1}, \ldots, r_{d}\right) M$.
- Theorem: Let f be an algebraic function of d variables. Then there is a unimodular integer matrix M with positive entries and a rational function F in $d+1$ variables such that f is the M-diagonal of F.
- The example $x \sqrt{1-x-y}$ shows that the elementary diagonal cannot always be used.

Example (Narayana numbers)

- The bivariate GF $F(x, y)$ for the Narayana numbers

$$
a_{r s}=\frac{1}{r}\binom{r}{s}\binom{r-1}{s-1}
$$

satisfies $P(F(x, y), x, y)=0$, where

$$
\begin{aligned}
P(w, x, y) & =w^{2}-w[1+x(y-1)]+x y \\
& =[w-F(x, y)][w-\bar{F}(x, y)] .
\end{aligned}
$$

where \bar{F} is the algebraic conjugate.

Example (Narayana numbers)

- The bivariate GF $F(x, y)$ for the Narayana numbers

$$
a_{r s}=\frac{1}{r}\binom{r}{s}\binom{r-1}{s-1}
$$

satisfies $P(F(x, y), x, y)=0$, where

$$
\begin{aligned}
P(w, x, y) & =w^{2}-w[1+x(y-1)]+x y \\
& =[w-F(x, y)][w-\bar{F}(x, y)] .
\end{aligned}
$$

where \bar{F} is the algebraic conjugate.

- Using the above construction we obtain the lifting

$$
G(u, x, y)=\frac{u(1-2 u-u x(1-y))}{1-u-x y-u x(1-y)}
$$

Example (Narayana numbers continued)

- The above lifting yields asymptotics by smooth point analysis in the usual way. The critical point equations yield

$$
u=s / r, x=\frac{(r-s)^{2}}{r s}, y=\frac{s^{2}}{(r-s)^{2}}
$$

and we obtain asymptotics starting with s^{-2}. For example

$$
a_{2 s, s} \sim \frac{16^{s}}{8 \pi s^{2}} .
$$

Example (Narayana numbers continued)

- The above lifting yields asymptotics by smooth point analysis in the usual way. The critical point equations yield

$$
u=s / r, x=\frac{(r-s)^{2}}{r s}, y=\frac{s^{2}}{(r-s)^{2}}
$$

and we obtain asymptotics starting with s^{-2}. For example

$$
a_{2 s, s} \sim \frac{16^{s}}{8 \pi s^{2}} .
$$

- Interestingly, specializing $y=1$ commutes with lifting. Is this always true?

Technical issues

- Safonov's lifting often takes us away from the combinatorial case. The Morse theory approach will probably be needed.

Technical issues

- Safonov's lifting often takes us away from the combinatorial case. The Morse theory approach will probably be needed.
- Dominant singularities can be at infinity.

Technical issues

- Safonov's lifting often takes us away from the combinatorial case. The Morse theory approach will probably be needed.
- Dominant singularities can be at infinity.
- There are other lifting procedures, some of which go from dimension d to $2 d$. They seem complicated, and we have not yet tried them in detail.

Technical issues

- Safonov's lifting often takes us away from the combinatorial case. The Morse theory approach will probably be needed.
- Dominant singularities can be at infinity.
- There are other lifting procedures, some of which go from dimension d to $2 d$. They seem complicated, and we have not yet tried them in detail.
- However in some cases they work better - for example $2 x y /(2+x+y)$ is a lifting of $x \sqrt{1-x}$, whereas Safonov's method appears not to work easily.

Research projects

- Systematically compare the computational efficiency of the diagonal method and our methods. Being done by student of Bruno Salvy (Lyon).

Research projects

- Systematically compare the computational efficiency of the diagonal method and our methods. Being done by student of Bruno Salvy (Lyon).
- Systematically derive asymptotics for lattice walks in the quarter plane (in progress with Alin Bostan, INRIA).

Research projects

- Systematically compare the computational efficiency of the diagonal method and our methods. Being done by student of Bruno Salvy (Lyon).
- Systematically derive asymptotics for lattice walks in the quarter plane (in progress with Alin Bostan, INRIA).
- Develop a good theory for algebraic singularities (using resolution of singularities somehow).

Research projects

- Systematically compare the computational efficiency of the diagonal method and our methods. Being done by student of Bruno Salvy (Lyon).
- Systematically derive asymptotics for lattice walks in the quarter plane (in progress with Alin Bostan, INRIA).
- Develop a good theory for algebraic singularities (using resolution of singularities somehow).
- Improve efficiency of algorithms for computing higher order terms in expansions. Implement them in Sage.

Research projects

- Systematically compare the computational efficiency of the diagonal method and our methods. Being done by student of Bruno Salvy (Lyon).
- Systematically derive asymptotics for lattice walks in the quarter plane (in progress with Alin Bostan, INRIA).
- Develop a good theory for algebraic singularities (using resolution of singularities somehow).
- Improve efficiency of algorithms for computing higher order terms in expansions. Implement them in Sage.
- Make the computation of dominant points algorithmic in the noncombinatorial case.

