ACSV: help wanted from computer algebra(ists)

Mark C. Wilson
University of Auckland

Computer Algebra in Combinatorics
Schrödinger Institute
Vienna
2017-11-14

Standing assumptions

- We use boldface to denote a multi-index: $\mathbf{z}=\left(z_{1}, \ldots, z_{d}\right)$, $\mathbf{r}=\left(r_{1}, \ldots, r_{d}\right)$. Similarly $\mathbf{z}^{\mathbf{r}}=z_{1}^{r_{1}} \ldots z_{d}^{r_{d}}$.

Standing assumptions

- We use boldface to denote a multi-index: $\mathbf{z}=\left(z_{1}, \ldots, z_{d}\right)$, $\mathbf{r}=\left(r_{1}, \ldots, r_{d}\right)$. Similarly $\mathbf{z}^{\mathbf{r}}=z_{1}^{r_{1}} \ldots z_{d}^{r_{d}}$.
- A (multivariate) sequence is a function $a: \mathbb{N}^{d} \rightarrow \mathbb{C}$ for some fixed d. Usually write $a_{\mathbf{r}}$ instead of $a(\mathbf{r})$.

Standing assumptions

- We use boldface to denote a multi-index: $\mathbf{z}=\left(z_{1}, \ldots, z_{d}\right)$, $\mathbf{r}=\left(r_{1}, \ldots, r_{d}\right)$. Similarly $\mathbf{z}^{\mathbf{r}}=z_{1}^{r_{1}} \ldots z_{d}^{r_{d}}$.
- A (multivariate) sequence is a function $a: \mathbb{N}^{d} \rightarrow \mathbb{C}$ for some fixed d. Usually write $a_{\mathbf{r}}$ instead of $a(\mathbf{r})$.
- The generating function (GF) is the formal power series

$$
F(\mathbf{z})=\sum_{\mathbf{r} \in \mathbb{N}^{d}} a_{\mathbf{r}} \mathbf{z}^{\mathbf{r}}
$$

Standing assumptions

- We use boldface to denote a multi-index: $\mathbf{z}=\left(z_{1}, \ldots, z_{d}\right)$, $\mathbf{r}=\left(r_{1}, \ldots, r_{d}\right)$. Similarly $\mathbf{z}^{\mathbf{r}}=z_{1}^{r_{1}} \ldots z_{d}^{r_{d}}$.
- A (multivariate) sequence is a function $a: \mathbb{N}^{d} \rightarrow \mathbb{C}$ for some fixed d. Usually write $a_{\mathbf{r}}$ instead of $a(\mathbf{r})$.
- The generating function (GF) is the formal power series

$$
F(\mathbf{z})=\sum_{\mathbf{r} \in \mathbb{N}^{d}} a_{\mathbf{r}} \mathbf{z}^{\mathbf{r}}
$$

- Assume $F(\mathbf{z})=G(\mathbf{z}) / H(\mathbf{z})$ where G, H are polynomials. The singular variety $\mathcal{V}:=\{\mathbf{z}: H(\mathbf{z})=0\}$ consists of poles.

Standing assumptions

- We use boldface to denote a multi-index: $\mathbf{z}=\left(z_{1}, \ldots, z_{d}\right)$, $\mathbf{r}=\left(r_{1}, \ldots, r_{d}\right)$. Similarly $\mathbf{z}^{\mathbf{r}}=z_{1}^{r_{1}} \ldots z_{d}^{r_{d}}$.
- A (multivariate) sequence is a function $a: \mathbb{N}^{d} \rightarrow \mathbb{C}$ for some fixed d. Usually write $a_{\mathbf{r}}$ instead of $a(\mathbf{r})$.
- The generating function (GF) is the formal power series

$$
F(\mathbf{z})=\sum_{\mathbf{r} \in \mathbb{N}^{d}} a_{\mathbf{r}} \mathbf{z}^{\mathbf{r}}
$$

- Assume $F(\mathbf{z})=G(\mathbf{z}) / H(\mathbf{z})$ where G, H are polynomials. The singular variety $\mathcal{V}:=\{\mathbf{z}: H(\mathbf{z})=0\}$ consists of poles.
- To avoid discussing topology, assume all coefficients of F are nonnegative.

Outline of ACSV results

- Given direction $\overline{\mathbf{r}}$, asymptotics in that direction are determined by a (generically zero-dimensional) variety, of critical points.

Outline of ACSV results

- Given direction $\overline{\mathbf{r}}$, asymptotics in that direction are determined by a (generically zero-dimensional) variety, of critical points.
- We may restrict to a dominant point $\mathbf{z}_{*}(\overline{\mathbf{r}})$ lying in the positive orthant, which determines the exponential rate.

Outline of ACSV results

- Given direction $\overline{\mathbf{r}}$, asymptotics in that direction are determined by a (generically zero-dimensional) variety, of critical points.
- We may restrict to a dominant point $\mathbf{z}_{*}(\overline{\mathbf{r}})$ lying in the positive orthant, which determines the exponential rate.
- For subexponential factors, there is an asymptotic series $\mathcal{A}\left(\mathbf{z}_{*}\right)$ depending on the type of singularity at \mathbf{z}_{*}. Each term is computable from finitely many derivatives of G and H at \mathbf{z}_{*}.

Outline of ACSV results

- Given direction $\overline{\mathbf{r}}$, asymptotics in that direction are determined by a (generically zero-dimensional) variety, of critical points.
- We may restrict to a dominant point $\mathbf{z}_{*}(\overline{\mathbf{r}})$ lying in the positive orthant, which determines the exponential rate.
- For subexponential factors, there is an asymptotic series $\mathcal{A}\left(\mathbf{z}_{*}\right)$ depending on the type of singularity at \mathbf{z}_{*}. Each term is computable from finitely many derivatives of G and H at \mathbf{z}_{*}.
- This yields an asymptotic expansion

$$
a_{\mathbf{r}} \sim \mathbf{z}_{*}(\overline{\mathbf{r}})^{-\mathbf{r}} \mathcal{A}\left(\mathbf{z}_{*}\right)
$$

that is uniform on compact subsets of directions, provided the geometry at $\mathbf{z}_{*}(\overline{\mathbf{r}})$ does not change.

Simplest asymptotic formulae

- Smooth point:

$$
a_{\mathbf{r}} \sim \mathbf{z}_{*}(\overline{\mathbf{r}})^{-\mathbf{r}} \sqrt{\frac{1}{(2 \pi|\mathbf{r}|)^{d-1} \kappa\left(\mathbf{z}_{*}(\overline{\mathbf{r}})\right)}} \frac{G\left(\mathbf{z}_{*}(\overline{\mathbf{r}})\right)}{\left|\nabla_{\log } H\left(\mathbf{z}_{*}(\overline{\mathbf{r}})\right)\right|}
$$

where $|\mathbf{r}|=\sum_{i} r_{i}$ and κ is the Gaussian curvature of $\log \mathcal{V}$ at $\log \mathbf{z}_{*}(\overline{\mathbf{r}})$.

Simplest asymptotic formulae

- Smooth point:

$$
a_{\mathbf{r}} \sim \mathbf{z}_{*}(\overline{\mathbf{r}})^{-\mathbf{r}} \sqrt{\frac{1}{(2 \pi|\mathbf{r}|)^{d-1} \kappa\left(\mathbf{z}_{*}(\overline{\mathbf{r}})\right)}} \frac{G\left(\mathbf{z}_{*}(\overline{\mathbf{r}})\right)}{\left|\nabla_{\log } H\left(\mathbf{z}_{*}(\overline{\mathbf{r}})\right)\right|}
$$

where $|\mathbf{r}|=\sum_{i} r_{i}$ and κ is the Gaussian curvature of $\log \mathcal{V}$ at $\log \mathbf{Z}_{*}(\overline{\mathbf{r}})$.

- The Gaussian curvature can be computed explicitly in terms of derivatives of H to second order.

Simplest asymptotic formulae

- Smooth point:

$$
a_{\mathbf{r}} \sim \mathbf{z}_{*}(\overline{\mathbf{r}})^{-\mathbf{r}} \sqrt{\frac{1}{(2 \pi|\mathbf{r}|)^{d-1} \kappa\left(\mathbf{z}_{*}(\overline{\mathbf{r}})\right)}} \frac{G\left(\mathbf{z}_{*}(\overline{\mathbf{r}})\right)}{\left|\nabla_{\log } H\left(\mathbf{z}_{*}(\overline{\mathbf{r}})\right)\right|}
$$

where $|\mathbf{r}|=\sum_{i} r_{i}$ and κ is the Gaussian curvature of $\log \mathcal{V}$ at $\log \mathbf{z}_{*}(\overline{\mathbf{r}})$.

- The Gaussian curvature can be computed explicitly in terms of derivatives of H to second order.
- Multiple point:

$$
a_{\mathbf{r}} \sim \mathbf{z}_{*}(\overline{\mathbf{r}})^{-\mathbf{r}} G\left(\mathbf{z}_{*}(\overline{\mathbf{r}})\right) \operatorname{det} J\left(\mathbf{z}_{*}(\overline{\mathbf{r}})\right)^{-1}
$$

where J is the Jacobian matrix $\left(\partial H_{i} / \partial z_{j}\right)$.

Why we need computer algebra

1. Conversion of G / H to various forms.

Why we need computer algebra

1. Conversion of G / H to various forms.
2. Classification of singularities.

Why we need computer algebra

1. Conversion of G / H to various forms.
2. Classification of singularities.
3. Setting up critical point equations on the various strata of \mathcal{V}.

Why we need computer algebra

1. Conversion of G / H to various forms.
2. Classification of singularities.
3. Setting up critical point equations on the various strata of \mathcal{V}.
4. Determining which critical points contribute.

Why we need computer algebra

1. Conversion of G / H to various forms.
2. Classification of singularities.
3. Setting up critical point equations on the various strata of \mathcal{V}.
4. Determining which critical points contribute.
5. Solution of equations: find critical point explicitly, so exponential rate is determined.

Why we need computer algebra

1. Conversion of G / H to various forms.
2. Classification of singularities.
3. Setting up critical point equations on the various strata of \mathcal{V}.
4. Determining which critical points contribute.
5. Solution of equations: find critical point explicitly, so exponential rate is determined.
6. Simplifying algebraic expressions involving values of G, H at critical points.

Why we need computer algebra

1. Conversion of G / H to various forms.
2. Classification of singularities.
3. Setting up critical point equations on the various strata of \mathcal{V}.
4. Determining which critical points contribute.
5. Solution of equations: find critical point explicitly, so exponential rate is determined.
6. Simplifying algebraic expressions involving values of G, H at critical points.
7. Differential operators applied to G, H at critical points, using parametrized data, for higher order asymptotics.

Some conceptual difficulties

- Our methods are analytic, so computations should be carried out in the analytic local ring (the ring of germs of holomorphic functions at a point).

Some conceptual difficulties

- Our methods are analytic, so computations should be carried out in the analytic local ring (the ring of germs of holomorphic functions at a point).
- Computation in this ring is trickier than in polynomial rings. However there is a theory of computation in local rings and apparently SINGULAR implements some of it.

Some conceptual difficulties

- Our methods are analytic, so computations should be carried out in the analytic local ring (the ring of germs of holomorphic functions at a point).
- Computation in this ring is trickier than in polynomial rings. However there is a theory of computation in local rings and apparently SINGULAR implements some of it.
- In many applications we have a global factorization in the polynomial ring that coincides with the local analytic factorization. We call this the simple case. The current implementation considers only this case.

Some conceptual difficulties

- Our methods are analytic, so computations should be carried out in the analytic local ring (the ring of germs of holomorphic functions at a point).
- Computation in this ring is trickier than in polynomial rings. However there is a theory of computation in local rings and apparently SINGULAR implements some of it.
- In many applications we have a global factorization in the polynomial ring that coincides with the local analytic factorization. We call this the simple case. The current implementation considers only this case.
- Help wanted in finding the state of the art!

Implementation

- Our basic results for smooth and multiple points are implemented in open source software mostly written by Alex Raichev. This was a standalone package but thanks to Daniel Krenn it is now part of the core Sage distribution. It has a few thousand lines of code.

Implementation

- Our basic results for smooth and multiple points are implemented in open source software mostly written by Alex Raichev. This was a standalone package but thanks to Daniel Krenn it is now part of the core Sage distribution. It has a few thousand lines of code.
- Status:

Implementation

- Our basic results for smooth and multiple points are implemented in open source software mostly written by Alex Raichev. This was a standalone package but thanks to Daniel Krenn it is now part of the core Sage distribution. It has a few thousand lines of code.
- Status:
- Conversion of G / H to various forms.

Implementation

- Our basic results for smooth and multiple points are implemented in open source software mostly written by Alex Raichev. This was a standalone package but thanks to Daniel Krenn it is now part of the core Sage distribution. It has a few thousand lines of code.
- Status:
- Conversion of G / H to various forms.
- Classification of singularities.

Implementation

- Our basic results for smooth and multiple points are implemented in open source software mostly written by Alex Raichev. This was a standalone package but thanks to Daniel Krenn it is now part of the core Sage distribution. It has a few thousand lines of code.
- Status:
- Conversion of G / H to various forms.
- Classification of singularities.
- Setting up critical point equations on the various strata.

Implementation

- Our basic results for smooth and multiple points are implemented in open source software mostly written by Alex Raichev. This was a standalone package but thanks to Daniel Krenn it is now part of the core Sage distribution. It has a few thousand lines of code.
- Status:
- Conversion of G / H to various forms.
- Classification of singularities.
- Setting up critical point equations on the various strata.
- Determining which critical points contribute.

Implementation

- Our basic results for smooth and multiple points are implemented in open source software mostly written by Alex Raichev. This was a standalone package but thanks to Daniel Krenn it is now part of the core Sage distribution. It has a few thousand lines of code.
- Status:
- Conversion of G / H to various forms.
- Classification of singularities.
- Setting up critical point equations on the various strata.
- Determining which critical points contribute.
- Solution of equations: find critical point explicitly, so exponential rate is determined.

Implementation

- Our basic results for smooth and multiple points are implemented in open source software mostly written by Alex Raichev. This was a standalone package but thanks to Daniel Krenn it is now part of the core Sage distribution. It has a few thousand lines of code.
- Status:
- Conversion of G / H to various forms.
- Classification of singularities.
- Setting up critical point equations on the various strata.
- Determining which critical points contribute.
- Solution of equations: find critical point explicitly, so exponential rate is determined.
- Simplifying formulae involving values of G, H at critical points.

Implementation

- Our basic results for smooth and multiple points are implemented in open source software mostly written by Alex Raichev. This was a standalone package but thanks to Daniel Krenn it is now part of the core Sage distribution. It has a few thousand lines of code.
- Status:
- Conversion of G / H to various forms.
- Classification of singularities.
- Setting up critical point equations on the various strata.
- Determining which critical points contribute.
- Solution of equations: find critical point explicitly, so exponential rate is determined.
- Simplifying formulae involving values of G, H at critical points.
- Differential operators applied to G, H at critical points, using derived data, for higher order asymptotics.

Example

- Example: let $H=H_{1} H_{2} H_{3}:=(1-x)(1-y)(1-x y)$. In the local ring at $(1,1)$, each factor should be in the ideal generated by the other two (Nullstellensatz).

Example

- Example: let $H=H_{1} H_{2} H_{3}:=(1-x)(1-y)(1-x y)$. In the local ring at $(1,1)$, each factor should be in the ideal generated by the other two (Nullstellensatz).
- In fact it is true globally, since $H_{3}=H_{1}+H_{2}-H_{1} H_{2}$. (Nullstellensatz certificate).

Example

- Example: let $H=H_{1} H_{2} H_{3}:=(1-x)(1-y)(1-x y)$. In the local ring at $(1,1)$, each factor should be in the ideal generated by the other two (Nullstellensatz).
- In fact it is true globally, since $H_{3}=H_{1}+H_{2}-H_{1} H_{2}$. (Nullstellensatz certificate).
- Thus eventually we obtain

$$
F=\frac{1}{H_{1} H_{2} H_{3}}=\cdots=\frac{2-y}{(1-y)(1-x y)^{2}}+\frac{1}{(1-x)(1-x y)^{2}}
$$

Example

- Example: let $H=H_{1} H_{2} H_{3}:=(1-x)(1-y)(1-x y)$. In the local ring at $(1,1)$, each factor should be in the ideal generated by the other two (Nullstellensatz).
- In fact it is true globally, since $H_{3}=H_{1}+H_{2}-H_{1} H_{2}$. (Nullstellensatz certificate).
- Thus eventually we obtain

$$
F=\frac{1}{H_{1} H_{2} H_{3}}=\cdots=\frac{2-y}{(1-y)(1-x y)^{2}}+\frac{1}{(1-x)(1-x y)^{2}} .
$$

- Reduction to the squarefree case is then easy and algorithmic.

Example

- Example: let $H=H_{1} H_{2} H_{3}:=(1-x)(1-y)(1-x y)$. In the local ring at $(1,1)$, each factor should be in the ideal generated by the other two (Nullstellensatz).
- In fact it is true globally, since $H_{3}=H_{1}+H_{2}-H_{1} H_{2}$. (Nullstellensatz certificate).
- Thus eventually we obtain

$$
F=\frac{1}{H_{1} H_{2} H_{3}}=\cdots=\frac{2-y}{(1-y)(1-x y)^{2}}+\frac{1}{(1-x)(1-x y)^{2}} .
$$

- Reduction to the squarefree case is then easy and algorithmic.
- Thus we can reduce to the case where the number of factors it at most the dimension.

Classifying singularities

- Are we in the simple case? Factor into irreducibles $H=\prod_{i} H_{i}^{n_{i}}$, check whether $\nabla H_{i}=0, H_{i}=0$ has a solution.

Classifying singularities

- Are we in the simple case? Factor into irreducibles $H=\prod_{i} H_{i}^{n_{i}}$, check whether $\nabla H_{i}=0, H_{i}=0$ has a solution.
- Multiple points of order k come from simultaneous vanishing of k irreducibles (for transversality, check the log gradients span a space of dimension k).

Classifying singularities

- Are we in the simple case? Factor into irreducibles $H=\prod_{i} H_{i}^{n_{i}}$, check whether $\nabla H_{i}=0, H_{i}=0$ has a solution.
- Multiple points of order k come from simultaneous vanishing of k irreducibles (for transversality, check the log gradients span a space of dimension k).
- I do not know how to do this in the general case. But the local factors are branches of algebraic functions, so someone must know something

Classifying singularities

- Are we in the simple case? Factor into irreducibles $H=\prod_{i} H_{i}^{n_{i}}$, check whether $\nabla H_{i}=0, H_{i}=0$ has a solution.
- Multiple points of order k come from simultaneous vanishing of k irreducibles (for transversality, check the log gradients span a space of dimension k).
- I do not know how to do this in the general case. But the local factors are branches of algebraic functions, so someone must know something
- Eventually, want to understand the worse singularities. How to compute a normal form for a singularity?

Example (effect of numerator, I)

- Given $F=G / H$ where $G=1, H_{1}=3-2 x-y$, $H_{2}=3-x-2 y, H=H_{1} H_{2}$.

Example (effect of numerator, I)

- Given $F=G / H$ where $G=1, H_{1}=3-2 x-y$, $H_{2}=3-x-2 y, H=H_{1} H_{2}$.
- Here \mathcal{V} is smooth at every point except $(1,1)$. We are in the simple case.

Example (effect of numerator, I)

- Given $F=G / H$ where $G=1, H_{1}=3-2 x-y$, $H_{2}=3-x-2 y, H=H_{1} H_{2}$.
- Here \mathcal{V} is smooth at every point except $(1,1)$. We are in the simple case.
- We obtain $a_{r r} \sim 3$ by multiple point formula below.

Example (effect of numerator, I)

- Given $F=G / H$ where $G=1, H_{1}=3-2 x-y$, $H_{2}=3-x-2 y, H=H_{1} H_{2}$.
- Here \mathcal{V} is smooth at every point except $(1,1)$. We are in the simple case.
- We obtain $a_{r r} \sim 3$ by multiple point formula below.
- If we change to $G=x-y$, our implementation gives $a_{r r} \sim 0$, which is correct, but only by luck.

Example (effect of numerator, I)

- Given $F=G / H$ where $G=1, H_{1}=3-2 x-y$, $H_{2}=3-x-2 y, H=H_{1} H_{2}$.
- Here \mathcal{V} is smooth at every point except $(1,1)$. We are in the simple case.
- We obtain $a_{r r} \sim 3$ by multiple point formula below.
- If we change to $G=x-y$, our implementation gives $a_{r r} \sim 0$, which is correct, but only by luck.
- Here G is in the ideal $\left\langle H_{1}, H_{2}\right\rangle, G=H_{2}-H_{1}$ so

$$
\frac{G}{H}=\frac{1}{3-2 x-y}-\frac{1}{3-x-2 y}
$$

Example (effect of numerator, I)

- Given $F=G / H$ where $G=1, H_{1}=3-2 x-y$, $H_{2}=3-x-2 y, H=H_{1} H_{2}$.
- Here \mathcal{V} is smooth at every point except $(1,1)$. We are in the simple case.
- We obtain $a_{r r} \sim 3$ by multiple point formula below.
- If we change to $G=x-y$, our implementation gives $a_{r r} \sim 0$, which is correct, but only by luck.
- Here G is in the ideal $\left\langle H_{1}, H_{2}\right\rangle, G=H_{2}-H_{1}$ so

$$
\frac{G}{H}=\frac{1}{3-2 x-y}-\frac{1}{3-x-2 y}
$$

- Thus it is not always even obvious whether a point is smooth, and vanishing numerator affects exponential rate.

Example (effect of numerator, II)

- Here $F=G / H$ where $G=x-y, H_{1}=3-2 x-y^{2}$, $H_{2}=3-x^{2}-2 y^{2}, H=H_{1} H_{2}$.

Example (effect of numerator, II)

- Here $F=G / H$ where $G=x-y, H_{1}=3-2 x-y^{2}$, $H_{2}=3-x^{2}-2 y^{2}, H=H_{1} H_{2}$.
- Again \mathcal{V} is clearly smooth at every point except $(1,1)$.

Example (effect of numerator, II)

- Here $F=G / H$ where $G=x-y, H_{1}=3-2 x-y^{2}$, $H_{2}=3-x^{2}-2 y^{2}, H=H_{1} H_{2}$.
- Again \mathcal{V} is clearly smooth at every point except $(1,1)$.
- Our current implementation gives $a_{r r} \sim 0$, but this is wrong.

Example (effect of numerator, II)

- Here $F=G / H$ where $G=x-y, H_{1}=3-2 x-y^{2}$, $H_{2}=3-x^{2}-2 y^{2}, H=H_{1} H_{2}$.
- Again \mathcal{V} is clearly smooth at every point except $(1,1)$.
- Our current implementation gives $a_{r r} \sim 0$, but this is wrong.
- Here G is not in the ideal $\left\langle H_{1}, H_{2}\right\rangle$ of the polynomial ring.

Example (effect of numerator, II)

- Here $F=G / H$ where $G=x-y, H_{1}=3-2 x-y^{2}$, $H_{2}=3-x^{2}-2 y^{2}, H=H_{1} H_{2}$.
- Again \mathcal{V} is clearly smooth at every point except $(1,1)$.
- Our current implementation gives $a_{r r} \sim 0$, but this is wrong.
- Here G is not in the ideal $\left\langle H_{1}, H_{2}\right\rangle$ of the polynomial ring.
- We need to go to the local analytic ring. Ring theoretic arguments (Nullstellensatz, Noetherianity) show that G must lie in the ideal generated by H_{1}, H_{2} and a simplification again occurs. Again we will have smooth point behaviour.

Example (effect of numerator, II)

- Here $F=G / H$ where $G=x-y, H_{1}=3-2 x-y^{2}$, $H_{2}=3-x^{2}-2 y^{2}, H=H_{1} H_{2}$.
- Again \mathcal{V} is clearly smooth at every point except $(1,1)$.
- Our current implementation gives $a_{r r} \sim 0$, but this is wrong.
- Here G is not in the ideal $\left\langle H_{1}, H_{2}\right\rangle$ of the polynomial ring.
- We need to go to the local analytic ring. Ring theoretic arguments (Nullstellensatz, Noetherianity) show that G must lie in the ideal generated by H_{1}, H_{2} and a simplification again occurs. Again we will have smooth point behaviour.
- How to do this algorithmically?

Example (effect of numerator, III)

- If the multiple point is not isolated (includes smooth points), vanishing numerator does not affect exponential rate, except if all coefficients are zero.

Example (effect of numerator, III)

- If the multiple point is not isolated (includes smooth points), vanishing numerator does not affect exponential rate, except if all coefficients are zero.
- I am not sure how to detect this latter case in general.

Example (effect of numerator, III)

- If the multiple point is not isolated (includes smooth points), vanishing numerator does not affect exponential rate, except if all coefficients are zero.
- I am not sure how to detect this latter case in general.
- For example, $(x-y) /(1-x-y)$ has identically zero diagonal. The contributing point for the main diagonal is $(1 / 2,1 / 2)$ and the smooth point formula will yield 0 for each coefficient.

Example (effect of numerator, III)

- If the multiple point is not isolated (includes smooth points), vanishing numerator does not affect exponential rate, except if all coefficients are zero.
- I am not sure how to detect this latter case in general.
- For example, $(x-y) /(1-x-y)$ has identically zero diagonal. The contributing point for the main diagonal is $(1 / 2,1 / 2)$ and the smooth point formula will yield 0 for each coefficient.
- If we perturb the direction slightly, we obtain similar results to above, and the first order asymptotic varies continuously in direction.

Example (effect of numerator, III)

- If the multiple point is not isolated (includes smooth points), vanishing numerator does not affect exponential rate, except if all coefficients are zero.
- I am not sure how to detect this latter case in general.
- For example, $(x-y) /(1-x-y)$ has identically zero diagonal. The contributing point for the main diagonal is $(1 / 2,1 / 2)$ and the smooth point formula will yield 0 for each coefficient.
- If we perturb the direction slightly, we obtain similar results to above, and the first order asymptotic varies continuously in direction.
- Our implementation only tells us, with increasing effort, that each coefficient in the asymptotic expansion is zero. It would be nice to be able to detect this in a preprocessing step.

Example (local factorization of lemniscate)

- Given $F=1 / H$ where H is irreducible, given by $H(x, y)=$ $19-20 x-20 y+5 x^{2}+14 x y+5 y^{2}-2 x^{2} y-2 x y^{2}+x^{2} y^{2}$.

Example (local factorization of lemniscate)

- Given $F=1 / H$ where H is irreducible, given by $H(x, y)=$ $19-20 x-20 y+5 x^{2}+14 x y+5 y^{2}-2 x^{2} y-2 x y^{2}+x^{2} y^{2}$.
- Here \mathcal{V} is smooth at every point except $(1,1)$, which we see by solving the system $\{H=0, \nabla H=0\}$.

Example (local factorization of lemniscate)

- Given $F=1 / H$ where H is irreducible, given by $H(x, y)=$ $19-20 x-20 y+5 x^{2}+14 x y+5 y^{2}-2 x^{2} y-2 x y^{2}+x^{2} y^{2}$.
- Here \mathcal{V} is smooth at every point except $(1,1)$, which we see by solving the system $\{H=0, \nabla H=0\}$.
- At $(1,1)$, changing variables to $h(u, v):=H(1+u, 1+v)$, we see that $h(u, v)=4 u^{2}+10 u v+4 v^{2}+C(u, v)$ where C has no terms of degree less than 3 .

Example (local factorization of lemniscate)

- Given $F=1 / H$ where H is irreducible, given by $H(x, y)=$ $19-20 x-20 y+5 x^{2}+14 x y+5 y^{2}-2 x^{2} y-2 x y^{2}+x^{2} y^{2}$.
- Here \mathcal{V} is smooth at every point except $(1,1)$, which we see by solving the system $\{H=0, \nabla H=0\}$.
- At $(1,1)$, changing variables to $h(u, v):=H(1+u, 1+v)$, we see that $h(u, v)=4 u^{2}+10 u v+4 v^{2}+C(u, v)$ where C has no terms of degree less than 3 .
- The quadratic part factors into distinct factors, showing that $(1,1)$ is a transverse multiple point.

Example (local factorization of lemniscate)

- Given $F=1 / H$ where H is irreducible, given by $H(x, y)=$ $19-20 x-20 y+5 x^{2}+14 x y+5 y^{2}-2 x^{2} y-2 x y^{2}+x^{2} y^{2}$.
- Here \mathcal{V} is smooth at every point except $(1,1)$, which we see by solving the system $\{H=0, \nabla H=0\}$.
- At $(1,1)$, changing variables to $h(u, v):=H(1+u, 1+v)$, we see that $h(u, v)=4 u^{2}+10 u v+4 v^{2}+C(u, v)$ where C has no terms of degree less than 3 .
- The quadratic part factors into distinct factors, showing that $(1,1)$ is a transverse multiple point.
- The current implementation does not deal with this at all.

Critical point equations

- A smooth point of \mathcal{V} is critical for direction $\overline{\mathbf{r}}$ iff the outward normal to $\log \mathcal{V}$ is parallel to \mathbf{r}. In other words, for some $\lambda \in \mathbb{C}, \mathbf{z}_{*}$ solves

$$
\begin{aligned}
& \nabla_{\log } H(\mathbf{z}):=\left(z_{1} \partial H / \partial z_{1}, \ldots, z_{d} \partial H / \partial H_{d}\right)=\lambda \mathbf{r} \\
& H(\mathbf{z})=\mathbf{0}
\end{aligned}
$$

This gives $d+1$ polynomial equations in $d+1$ unknowns.

Critical point equations

- A smooth point of \mathcal{V} is critical for direction $\overline{\mathbf{r}}$ iff the outward normal to $\log \mathcal{V}$ is parallel to \mathbf{r}. In other words, for some $\lambda \in \mathbb{C}, \mathbf{z}_{*}$ solves

$$
\begin{aligned}
& \nabla_{\log } H(\mathbf{z}):=\left(z_{1} \partial H / \partial z_{1}, \ldots, z_{d} \partial H / \partial H_{d}\right)=\lambda \mathbf{r} \\
& H(\mathbf{z})=\mathbf{0}
\end{aligned}
$$

This gives $d+1$ polynomial equations in $d+1$ unknowns.

- For multiple points given by k factors intersecting, there is a related polynomial system expressing the vanishing of all minors of order $k+1$ of a $k+1$ by d matrix. This is not yet implemented, but is easy provided we can deal with factorization of H (e.g. in the simple case).

Critical point equations

- A smooth point of \mathcal{V} is critical for direction $\overline{\mathbf{r}}$ iff the outward normal to $\log \mathcal{V}$ is parallel to \mathbf{r}. In other words, for some $\lambda \in \mathbb{C}, \mathbf{z}_{*}$ solves

$$
\begin{aligned}
& \nabla_{\log } H(\mathbf{z}):=\left(z_{1} \partial H / \partial z_{1}, \ldots, z_{d} \partial H / \partial H_{d}\right)=\lambda \mathbf{r} \\
& H(\mathbf{z})=\mathbf{0}
\end{aligned}
$$

This gives $d+1$ polynomial equations in $d+1$ unknowns.

- For multiple points given by k factors intersecting, there is a related polynomial system expressing the vanishing of all minors of order $k+1$ of a $k+1$ by d matrix. This is not yet implemented, but is easy provided we can deal with factorization of H (e.g. in the simple case).
- In fact $\lambda \in \mathbb{R}$ which helps to eliminate some noncontributing critical points.

Example (almost trivial)

- $G=1, H=1-x-y$.

Example (almost trivial)

- $G=1, H=1-x-y$.
- $\nabla_{\log } H=(x, y)$ so clearly all points are smooth.

Example (almost trivial)

- $G=1, H=1-x-y$.
- $\nabla_{\log } H=(x, y)$ so clearly all points are smooth.
- $(x, y)=\lambda(r, s), H=0$ so $x=r /(r+s), y=s /(r+s)$, so exponential rate $(r+s)^{r+s} /\left(r^{r} s^{s}\right)$. Note solution is unique.

Example (almost trivial)

- $G=1, H=1-x-y$.
- $\nabla_{\log } H=(x, y)$ so clearly all points are smooth.
- $(x, y)=\lambda(r, s), H=0$ so $x=r /(r+s), y=s /(r+s)$, so exponential rate $(r+s)^{r+s} /\left(r^{r} s^{s}\right)$. Note solution is unique.
- Leading term easily computed to equal

$$
\sqrt{\frac{r+s}{2 \pi r s}}
$$

Example (almost trivial)

- $G=1, H=1-x-y$.
- $\nabla_{\log } H=(x, y)$ so clearly all points are smooth.
- $(x, y)=\lambda(r, s), H=0$ so $x=r /(r+s), y=s /(r+s)$, so exponential rate $(r+s)^{r+s} /\left(r^{r} s^{s}\right)$. Note solution is unique.
- Leading term easily computed to equal

$$
\sqrt{\frac{r+s}{2 \pi r s}}
$$

- For higher order terms, even this example should be done by computer algebra. For example

$$
a_{r r} \sim 4^{r}\left[\frac{1}{\sqrt{\pi r}}-\frac{1}{8 \sqrt{\pi r^{3}}}+\frac{1}{128 \sqrt{\pi r^{5}}}\right] .
$$

Example (easy)

- General (symbolic) direction for previous example: 1 second.

Example (easy)

- General (symbolic) direction for previous example: 1 second.
- Polyominoes: fixed direction in 1 second.

Example (easy)

- General (symbolic) direction for previous example: 1 second.
- Polyominoes: fixed direction in 1 second.
- Most smooth problems in 2 variables can be done within a few seconds for up to order 3 and many to higher order.

Example (easy)

- General (symbolic) direction for previous example: 1 second.
- Polyominoes: fixed direction in 1 second.
- Most smooth problems in 2 variables can be done within a few seconds for up to order 3 and many to higher order.
- For 3 or more variables, even order 3 can be slow.

Example (easy)

- General (symbolic) direction for previous example: 1 second.
- Polyominoes: fixed direction in 1 second.
- Most smooth problems in 2 variables can be done within a few seconds for up to order 3 and many to higher order.
- For 3 or more variables, even order 3 can be slow.
- Double point examples in 2 variables are very easy, even with vanishing numerator.

Example (harder)

- An interesting lattice path problem yields

$$
\begin{aligned}
& G=(1+x)\left(1-2 t\left(1+x^{2}\right)\right) \\
& H=(1-y)\left(1-t\left(1+x^{2}+x y^{2}\right)\right)\left(1-t\left(1+x^{2}\right)\right)
\end{aligned}
$$

Example (harder)

- An interesting lattice path problem yields

$$
\begin{aligned}
& G=(1+x)\left(1-2 t\left(1+x^{2}\right)\right) \\
& H=(1-y)\left(1-t\left(1+x^{2}+x y^{2}\right)\right)\left(1-t\left(1+x^{2}\right)\right)
\end{aligned}
$$

- Critical points: we have $(1,1,1 / 3),\left(1, \sqrt{2}, \frac{1}{4}\right),\left(1,-\sqrt{2}, \frac{1}{4}\right)$ $\left(-1, i \sqrt{2}, \frac{1}{4}\right),\left(-1, i \sqrt{2}, \frac{1}{4}\right)$.

Example (harder)

- An interesting lattice path problem yields

$$
\begin{aligned}
& G=(1+x)\left(1-2 t\left(1+x^{2}\right)\right) \\
& H=(1-y)\left(1-t\left(1+x^{2}+x y^{2}\right)\right)\left(1-t\left(1+x^{2}\right)\right)
\end{aligned}
$$

- Critical points: we have $(1,1,1 / 3),\left(1, \sqrt{2}, \frac{1}{4}\right),\left(1,-\sqrt{2}, \frac{1}{4}\right)$ $\left(-1, i \sqrt{2}, \frac{1}{4}\right),\left(-1, i \sqrt{2}, \frac{1}{4}\right)$.
- Automatic detection of contributing points is not implemented. In this case the highest point $(1,1,1 / 3)$ does not contribute but the others do.

Example (harder)

- An interesting lattice path problem yields

$$
\begin{aligned}
& G=(1+x)\left(1-2 t\left(1+x^{2}\right)\right) \\
& H=(1-y)\left(1-t\left(1+x^{2}+x y^{2}\right)\right)\left(1-t\left(1+x^{2}\right)\right)
\end{aligned}
$$

- Critical points: we have $(1,1,1 / 3),\left(1, \sqrt{2}, \frac{1}{4}\right),\left(1,-\sqrt{2}, \frac{1}{4}\right)$ $\left(-1, i \sqrt{2}, \frac{1}{4}\right),\left(-1, i \sqrt{2}, \frac{1}{4}\right)$.
- Automatic detection of contributing points is not implemented. In this case the highest point $(1,1,1 / 3)$ does not contribute but the others do.
- First order asymptotic is zero at smooth point $\left(1, \sqrt{2}, \frac{1}{4}\right)$. Second order computation fails to halt in reasonable time (hours).

Why so slow?

- The problem in the previous example seems to be the multiple factors in H. In this case the positive contributing point is a zero of only one factor H_{2} and is smooth. If we rewrite $G / H=\left(G / H_{1} H_{3}\right) / H_{2}$, everything works fine, giving answer at that point

$$
\frac{(2 \sqrt{2})^{r}}{\pi r^{2}} \frac{(8-2 \sqrt{2})}{(3-2 \sqrt{2})}
$$

Why so slow?

- The problem in the previous example seems to be the multiple factors in H. In this case the positive contributing point is a zero of only one factor H_{2} and is smooth. If we rewrite $G / H=\left(G / H_{1} H_{3}\right) / H_{2}$, everything works fine, giving answer at that point

$$
\frac{(2 \sqrt{2})^{r}}{\pi r^{2}} \frac{(8-2 \sqrt{2})}{(3-2 \sqrt{2})}
$$

- Similarly the current method for computing critical points gives completely spurious points such as $(4,1,1 / 17)$ when run on G / H.

Why so slow?

- The problem in the previous example seems to be the multiple factors in H. In this case the positive contributing point is a zero of only one factor H_{2} and is smooth. If we rewrite $G / H=\left(G / H_{1} H_{3}\right) / H_{2}$, everything works fine, giving answer at that point

$$
\frac{(2 \sqrt{2})^{r}}{\pi r^{2}} \frac{(8-2 \sqrt{2})}{(3-2 \sqrt{2})}
$$

- Similarly the current method for computing critical points gives completely spurious points such as $(4,1,1 / 17)$ when run on G / H.
- Thus factorization is very important, which brings us back to the issues discussed earlier.

Asymptotic formulae - higher terms

- We change variable by $\mathbf{z}=\mathbf{z}_{*} \exp (i \theta)$ and derive asymptotics of a Fourier-Laplace integral $I(\lambda)$.

Asymptotic formulae - higher terms

- We change variable by $\mathbf{z}=\mathbf{z}_{*} \exp (i \theta)$ and derive asymptotics of a Fourier-Laplace integral $I(\lambda)$.
- The first term is usually easy to compute but others can be difficult, and they are necessary in many applications.

Asymptotic formulae - higher terms

- We change variable by $\mathbf{z}=\mathbf{z}_{*} \exp (i \theta)$ and derive asymptotics of a Fourier-Laplace integral $I(\lambda)$.
- The first term is usually easy to compute but others can be difficult, and they are necessary in many applications.
- This appears to be the main performance bottleneck in our current implementation.

Asymptotic formulae - higher terms

- We change variable by $\mathbf{z}=\mathbf{z}_{*} \exp (i \theta)$ and derive asymptotics of a Fourier-Laplace integral $I(\lambda)$.
- The first term is usually easy to compute but others can be difficult, and they are necessary in many applications.
- This appears to be the main performance bottleneck in our current implementation.
- For smooth and multiple points we have used an explicit formula of Hörmander.

Asymptotic formulae - higher terms

- We change variable by $\mathbf{z}=\mathbf{z}_{*} \exp (i \theta)$ and derive asymptotics of a Fourier-Laplace integral $I(\lambda)$.
- The first term is usually easy to compute but others can be difficult, and they are necessary in many applications.
- This appears to be the main performance bottleneck in our current implementation.
- For smooth and multiple points we have used an explicit formula of Hörmander.
- An alternative approach involving solving a system of equations may also be practical. We have not yet explored it.

Hörmander's explicit formula

For an isolated nondegenerate stationary point $\mathbf{0}$ in dimension d,

$$
I(\lambda) \sim\left(\operatorname{det}\left(\frac{\lambda f^{\prime \prime}(\mathbf{0})}{2 \pi}\right)\right)^{-1 / 2} \sum_{k \geq 0} \lambda^{-k} L_{k}(A, f)
$$

where L_{k} is a differential operator of order $2 k$ evaluated at $\mathbf{0}$:

$$
\begin{aligned}
\underline{f}(t) & =f(t)-(1 / 2) t f^{\prime \prime}(\mathbf{0}) t^{T} \\
\mathcal{D} & =\sum_{a, b}\left(f^{\prime \prime}(\mathbf{0})^{-1}\right)_{a, b}\left(-\mathrm{i} \partial_{a}\right)\left(-\mathrm{i} \partial_{b}\right) \\
L_{k}(A, f) & =\sum_{l \leq 2 k} \frac{\mathcal{D}^{l+k}\left(A \underline{f}^{l}\right)(\mathbf{0})}{(-1)^{k} 2^{l+k} l!(l+k)!} .
\end{aligned}
$$

For example $L_{0}(A, f)=A$,
$L_{1}(A, f)=-\mathcal{D}(A) / 2-\mathcal{D}^{2}(A \underline{f}) / 8-\mathcal{D}^{3}\left(A \underline{f}^{2}\right) / 48$.

Computing better with Hörmander's formula

- The current Sage code struggles when $d=3, k=3$, and sometimes even for smaller parameters. My guess is that we should be able to reorganize the computation to be more efficient.

Computing better with Hörmander's formula

- The current Sage code struggles when $d=3, k=3$, and sometimes even for smaller parameters. My guess is that we should be able to reorganize the computation to be more efficient.
- Note that \underline{f} vanishes to order 3 at 0 , so $A \underline{f}^{l}$ vanishes to order $3 l$, and \mathcal{D} is a 2 nd order linear operator. When \mathcal{D}^{l+k} is applied to $A \underline{f}^{l}$ and evaluated at 0 , many terms are automatically zero.

Computing better with Hörmander's formula

- The current Sage code struggles when $d=3, k=3$, and sometimes even for smaller parameters. My guess is that we should be able to reorganize the computation to be more efficient.
- Note that \underline{f} vanishes to order 3 at 0 , so $A \underline{f}^{l}$ vanishes to order $3 l$, and \mathcal{D} is a 2 nd order linear operator. When \mathcal{D}^{l+k} is applied to $A \underline{f}^{l}$ and evaluated at 0 , many terms are automatically zero.
- Maybe we can rewrite

$$
\sum_{k} \lambda^{-k} L_{k}(A, f)=\sum_{l} \sum_{2 k \geq l} \lambda^{-k} \frac{\mathcal{D}^{l+k}\left(A \underline{f}^{l}\right)(\mathbf{0})}{(-1)^{k} 2^{l+k} l!(l+k)!}
$$

