
ACSV: help wanted from computer algebra(ists)

Mark C. Wilson
University of Auckland

Computer Algebra in Combinatorics
Schrödinger Institute

Vienna
2017-11-14

ACSV: help wanted from computer algebra(ists)

Standing assumptions

I We use boldface to denote a multi-index: z = (z1, . . . , zd),
r = (r1, . . . , rd). Similarly zr = zr11 . . . zrdd .

I A (multivariate) sequence is a function a : Nd → C for some
fixed d. Usually write ar instead of a(r).

I The generating function (GF) is the formal power series

F (z) =
∑
r∈Nd

arz
r.

I Assume F (z) = G(z)/H(z) where G,H are polynomials. The
singular variety V := {z : H(z) = 0} consists of poles.

I To avoid discussing topology, assume all coefficients of F are
nonnegative.

ACSV: help wanted from computer algebra(ists)

Standing assumptions

I We use boldface to denote a multi-index: z = (z1, . . . , zd),
r = (r1, . . . , rd). Similarly zr = zr11 . . . zrdd .

I A (multivariate) sequence is a function a : Nd → C for some
fixed d. Usually write ar instead of a(r).

I The generating function (GF) is the formal power series

F (z) =
∑
r∈Nd

arz
r.

I Assume F (z) = G(z)/H(z) where G,H are polynomials. The
singular variety V := {z : H(z) = 0} consists of poles.

I To avoid discussing topology, assume all coefficients of F are
nonnegative.

ACSV: help wanted from computer algebra(ists)

Standing assumptions

I We use boldface to denote a multi-index: z = (z1, . . . , zd),
r = (r1, . . . , rd). Similarly zr = zr11 . . . zrdd .

I A (multivariate) sequence is a function a : Nd → C for some
fixed d. Usually write ar instead of a(r).

I The generating function (GF) is the formal power series

F (z) =
∑
r∈Nd

arz
r.

I Assume F (z) = G(z)/H(z) where G,H are polynomials. The
singular variety V := {z : H(z) = 0} consists of poles.

I To avoid discussing topology, assume all coefficients of F are
nonnegative.

ACSV: help wanted from computer algebra(ists)

Standing assumptions

I We use boldface to denote a multi-index: z = (z1, . . . , zd),
r = (r1, . . . , rd). Similarly zr = zr11 . . . zrdd .

I A (multivariate) sequence is a function a : Nd → C for some
fixed d. Usually write ar instead of a(r).

I The generating function (GF) is the formal power series

F (z) =
∑
r∈Nd

arz
r.

I Assume F (z) = G(z)/H(z) where G,H are polynomials. The
singular variety V := {z : H(z) = 0} consists of poles.

I To avoid discussing topology, assume all coefficients of F are
nonnegative.

ACSV: help wanted from computer algebra(ists)

Standing assumptions

I We use boldface to denote a multi-index: z = (z1, . . . , zd),
r = (r1, . . . , rd). Similarly zr = zr11 . . . zrdd .

I A (multivariate) sequence is a function a : Nd → C for some
fixed d. Usually write ar instead of a(r).

I The generating function (GF) is the formal power series

F (z) =
∑
r∈Nd

arz
r.

I Assume F (z) = G(z)/H(z) where G,H are polynomials. The
singular variety V := {z : H(z) = 0} consists of poles.

I To avoid discussing topology, assume all coefficients of F are
nonnegative.

ACSV: help wanted from computer algebra(ists)

Outline of ACSV results

I Given direction r, asymptotics in that direction are determined
by a (generically zero-dimensional) variety, of critical points.

I We may restrict to a dominant point z∗(r) lying in the
positive orthant, which determines the exponential rate.

I For subexponential factors, there is an asymptotic series A(z∗)
depending on the type of singularity at z∗. Each term is
computable from finitely many derivatives of G and H at z∗.

I This yields an asymptotic expansion

ar ∼ z∗(r)
−rA(z∗)

that is uniform on compact subsets of directions, provided the
geometry at z∗(r) does not change.

ACSV: help wanted from computer algebra(ists)

Outline of ACSV results

I Given direction r, asymptotics in that direction are determined
by a (generically zero-dimensional) variety, of critical points.

I We may restrict to a dominant point z∗(r) lying in the
positive orthant, which determines the exponential rate.

I For subexponential factors, there is an asymptotic series A(z∗)
depending on the type of singularity at z∗. Each term is
computable from finitely many derivatives of G and H at z∗.

I This yields an asymptotic expansion

ar ∼ z∗(r)
−rA(z∗)

that is uniform on compact subsets of directions, provided the
geometry at z∗(r) does not change.

ACSV: help wanted from computer algebra(ists)

Outline of ACSV results

I Given direction r, asymptotics in that direction are determined
by a (generically zero-dimensional) variety, of critical points.

I We may restrict to a dominant point z∗(r) lying in the
positive orthant, which determines the exponential rate.

I For subexponential factors, there is an asymptotic series A(z∗)
depending on the type of singularity at z∗. Each term is
computable from finitely many derivatives of G and H at z∗.

I This yields an asymptotic expansion

ar ∼ z∗(r)
−rA(z∗)

that is uniform on compact subsets of directions, provided the
geometry at z∗(r) does not change.

ACSV: help wanted from computer algebra(ists)

Outline of ACSV results

I Given direction r, asymptotics in that direction are determined
by a (generically zero-dimensional) variety, of critical points.

I We may restrict to a dominant point z∗(r) lying in the
positive orthant, which determines the exponential rate.

I For subexponential factors, there is an asymptotic series A(z∗)
depending on the type of singularity at z∗. Each term is
computable from finitely many derivatives of G and H at z∗.

I This yields an asymptotic expansion

ar ∼ z∗(r)
−rA(z∗)

that is uniform on compact subsets of directions, provided the
geometry at z∗(r) does not change.

ACSV: help wanted from computer algebra(ists)

Simplest asymptotic formulae

I Smooth point:

ar ∼ z∗(r)
−r

√
1

(2π|r|)d−1κ(z∗(r))
G(z∗(r))

| ∇logH(z∗(r))|

where |r| =
∑

i ri and κ is the Gaussian curvature of logV at
log z∗(r).

I The Gaussian curvature can be computed explicitly in terms
of derivatives of H to second order.

I Multiple point:

ar ∼ z∗(r)
−rG(z∗(r)) detJ(z∗(r))

−1

where J is the Jacobian matrix (∂Hi/∂zj).

ACSV: help wanted from computer algebra(ists)

Simplest asymptotic formulae

I Smooth point:

ar ∼ z∗(r)
−r

√
1

(2π|r|)d−1κ(z∗(r))
G(z∗(r))

| ∇logH(z∗(r))|

where |r| =
∑

i ri and κ is the Gaussian curvature of logV at
log z∗(r).

I The Gaussian curvature can be computed explicitly in terms
of derivatives of H to second order.

I Multiple point:

ar ∼ z∗(r)
−rG(z∗(r)) detJ(z∗(r))

−1

where J is the Jacobian matrix (∂Hi/∂zj).

ACSV: help wanted from computer algebra(ists)

Simplest asymptotic formulae

I Smooth point:

ar ∼ z∗(r)
−r

√
1

(2π|r|)d−1κ(z∗(r))
G(z∗(r))

| ∇logH(z∗(r))|

where |r| =
∑

i ri and κ is the Gaussian curvature of logV at
log z∗(r).

I The Gaussian curvature can be computed explicitly in terms
of derivatives of H to second order.

I Multiple point:

ar ∼ z∗(r)
−rG(z∗(r)) detJ(z∗(r))

−1

where J is the Jacobian matrix (∂Hi/∂zj).

ACSV: help wanted from computer algebra(ists)

Why we need computer algebra

1. Conversion of G/H to various forms.

2. Classification of singularities.

3. Setting up critical point equations on the various strata of V.

4. Determining which critical points contribute.

5. Solution of equations: find critical point explicitly, so
exponential rate is determined.

6. Simplifying algebraic expressions involving values of G,H at
critical points.

7. Differential operators applied to G,H at critical points, using
parametrized data, for higher order asymptotics.

ACSV: help wanted from computer algebra(ists)

Why we need computer algebra

1. Conversion of G/H to various forms.

2. Classification of singularities.

3. Setting up critical point equations on the various strata of V.

4. Determining which critical points contribute.

5. Solution of equations: find critical point explicitly, so
exponential rate is determined.

6. Simplifying algebraic expressions involving values of G,H at
critical points.

7. Differential operators applied to G,H at critical points, using
parametrized data, for higher order asymptotics.

ACSV: help wanted from computer algebra(ists)

Why we need computer algebra

1. Conversion of G/H to various forms.

2. Classification of singularities.

3. Setting up critical point equations on the various strata of V.

4. Determining which critical points contribute.

5. Solution of equations: find critical point explicitly, so
exponential rate is determined.

6. Simplifying algebraic expressions involving values of G,H at
critical points.

7. Differential operators applied to G,H at critical points, using
parametrized data, for higher order asymptotics.

ACSV: help wanted from computer algebra(ists)

Why we need computer algebra

1. Conversion of G/H to various forms.

2. Classification of singularities.

3. Setting up critical point equations on the various strata of V.

4. Determining which critical points contribute.

5. Solution of equations: find critical point explicitly, so
exponential rate is determined.

6. Simplifying algebraic expressions involving values of G,H at
critical points.

7. Differential operators applied to G,H at critical points, using
parametrized data, for higher order asymptotics.

ACSV: help wanted from computer algebra(ists)

Why we need computer algebra

1. Conversion of G/H to various forms.

2. Classification of singularities.

3. Setting up critical point equations on the various strata of V.

4. Determining which critical points contribute.

5. Solution of equations: find critical point explicitly, so
exponential rate is determined.

6. Simplifying algebraic expressions involving values of G,H at
critical points.

7. Differential operators applied to G,H at critical points, using
parametrized data, for higher order asymptotics.

ACSV: help wanted from computer algebra(ists)

Why we need computer algebra

1. Conversion of G/H to various forms.

2. Classification of singularities.

3. Setting up critical point equations on the various strata of V.

4. Determining which critical points contribute.

5. Solution of equations: find critical point explicitly, so
exponential rate is determined.

6. Simplifying algebraic expressions involving values of G,H at
critical points.

7. Differential operators applied to G,H at critical points, using
parametrized data, for higher order asymptotics.

ACSV: help wanted from computer algebra(ists)

Why we need computer algebra

1. Conversion of G/H to various forms.

2. Classification of singularities.

3. Setting up critical point equations on the various strata of V.

4. Determining which critical points contribute.

5. Solution of equations: find critical point explicitly, so
exponential rate is determined.

6. Simplifying algebraic expressions involving values of G,H at
critical points.

7. Differential operators applied to G,H at critical points, using
parametrized data, for higher order asymptotics.

ACSV: help wanted from computer algebra(ists)

Some conceptual difficulties

I Our methods are analytic, so computations should be carried
out in the analytic local ring (the ring of germs of
holomorphic functions at a point).

I Computation in this ring is trickier than in polynomial rings.
However there is a theory of computation in local rings and
apparently SINGULAR implements some of it.

I In many applications we have a global factorization in the
polynomial ring that coincides with the local analytic
factorization. We call this the simple case. The current
implementation considers only this case.

I Help wanted in finding the state of the art!

ACSV: help wanted from computer algebra(ists)

Some conceptual difficulties

I Our methods are analytic, so computations should be carried
out in the analytic local ring (the ring of germs of
holomorphic functions at a point).

I Computation in this ring is trickier than in polynomial rings.
However there is a theory of computation in local rings and
apparently SINGULAR implements some of it.

I In many applications we have a global factorization in the
polynomial ring that coincides with the local analytic
factorization. We call this the simple case. The current
implementation considers only this case.

I Help wanted in finding the state of the art!

ACSV: help wanted from computer algebra(ists)

Some conceptual difficulties

I Our methods are analytic, so computations should be carried
out in the analytic local ring (the ring of germs of
holomorphic functions at a point).

I Computation in this ring is trickier than in polynomial rings.
However there is a theory of computation in local rings and
apparently SINGULAR implements some of it.

I In many applications we have a global factorization in the
polynomial ring that coincides with the local analytic
factorization. We call this the simple case. The current
implementation considers only this case.

I Help wanted in finding the state of the art!

ACSV: help wanted from computer algebra(ists)

Some conceptual difficulties

I Our methods are analytic, so computations should be carried
out in the analytic local ring (the ring of germs of
holomorphic functions at a point).

I Computation in this ring is trickier than in polynomial rings.
However there is a theory of computation in local rings and
apparently SINGULAR implements some of it.

I In many applications we have a global factorization in the
polynomial ring that coincides with the local analytic
factorization. We call this the simple case. The current
implementation considers only this case.

I Help wanted in finding the state of the art!

ACSV: help wanted from computer algebra(ists)

Implementation

I Our basic results for smooth and multiple points are
implemented in open source software mostly written by Alex
Raichev. This was a standalone package but thanks to Daniel
Krenn it is now part of the core Sage distribution. It has a few
thousand lines of code.

I Status:

I Conversion of G/H to various forms.
I Classification of singularities.
I Setting up critical point equations on the various strata.
I Determining which critical points contribute.
I Solution of equations: find critical point explicitly, so

exponential rate is determined.
I Simplifying formulae involving values of G,H at critical points.
I Differential operators applied to G,H at critical points, using

derived data, for higher order asymptotics.

ACSV: help wanted from computer algebra(ists)

Implementation

I Our basic results for smooth and multiple points are
implemented in open source software mostly written by Alex
Raichev. This was a standalone package but thanks to Daniel
Krenn it is now part of the core Sage distribution. It has a few
thousand lines of code.

I Status:

I Conversion of G/H to various forms.
I Classification of singularities.
I Setting up critical point equations on the various strata.
I Determining which critical points contribute.
I Solution of equations: find critical point explicitly, so

exponential rate is determined.
I Simplifying formulae involving values of G,H at critical points.
I Differential operators applied to G,H at critical points, using

derived data, for higher order asymptotics.

ACSV: help wanted from computer algebra(ists)

Implementation

I Our basic results for smooth and multiple points are
implemented in open source software mostly written by Alex
Raichev. This was a standalone package but thanks to Daniel
Krenn it is now part of the core Sage distribution. It has a few
thousand lines of code.

I Status:
I Conversion of G/H to various forms.

I Classification of singularities.
I Setting up critical point equations on the various strata.
I Determining which critical points contribute.
I Solution of equations: find critical point explicitly, so

exponential rate is determined.
I Simplifying formulae involving values of G,H at critical points.
I Differential operators applied to G,H at critical points, using

derived data, for higher order asymptotics.

ACSV: help wanted from computer algebra(ists)

Implementation

I Our basic results for smooth and multiple points are
implemented in open source software mostly written by Alex
Raichev. This was a standalone package but thanks to Daniel
Krenn it is now part of the core Sage distribution. It has a few
thousand lines of code.

I Status:
I Conversion of G/H to various forms.
I Classification of singularities.

I Setting up critical point equations on the various strata.
I Determining which critical points contribute.
I Solution of equations: find critical point explicitly, so

exponential rate is determined.
I Simplifying formulae involving values of G,H at critical points.
I Differential operators applied to G,H at critical points, using

derived data, for higher order asymptotics.

ACSV: help wanted from computer algebra(ists)

Implementation

I Our basic results for smooth and multiple points are
implemented in open source software mostly written by Alex
Raichev. This was a standalone package but thanks to Daniel
Krenn it is now part of the core Sage distribution. It has a few
thousand lines of code.

I Status:
I Conversion of G/H to various forms.
I Classification of singularities.
I Setting up critical point equations on the various strata.

I Determining which critical points contribute.
I Solution of equations: find critical point explicitly, so

exponential rate is determined.
I Simplifying formulae involving values of G,H at critical points.
I Differential operators applied to G,H at critical points, using

derived data, for higher order asymptotics.

ACSV: help wanted from computer algebra(ists)

Implementation

I Our basic results for smooth and multiple points are
implemented in open source software mostly written by Alex
Raichev. This was a standalone package but thanks to Daniel
Krenn it is now part of the core Sage distribution. It has a few
thousand lines of code.

I Status:
I Conversion of G/H to various forms.
I Classification of singularities.
I Setting up critical point equations on the various strata.
I Determining which critical points contribute.

I Solution of equations: find critical point explicitly, so
exponential rate is determined.

I Simplifying formulae involving values of G,H at critical points.
I Differential operators applied to G,H at critical points, using

derived data, for higher order asymptotics.

ACSV: help wanted from computer algebra(ists)

Implementation

I Our basic results for smooth and multiple points are
implemented in open source software mostly written by Alex
Raichev. This was a standalone package but thanks to Daniel
Krenn it is now part of the core Sage distribution. It has a few
thousand lines of code.

I Status:
I Conversion of G/H to various forms.
I Classification of singularities.
I Setting up critical point equations on the various strata.
I Determining which critical points contribute.
I Solution of equations: find critical point explicitly, so

exponential rate is determined.

I Simplifying formulae involving values of G,H at critical points.
I Differential operators applied to G,H at critical points, using

derived data, for higher order asymptotics.

ACSV: help wanted from computer algebra(ists)

Implementation

I Our basic results for smooth and multiple points are
implemented in open source software mostly written by Alex
Raichev. This was a standalone package but thanks to Daniel
Krenn it is now part of the core Sage distribution. It has a few
thousand lines of code.

I Status:
I Conversion of G/H to various forms.
I Classification of singularities.
I Setting up critical point equations on the various strata.
I Determining which critical points contribute.
I Solution of equations: find critical point explicitly, so

exponential rate is determined.
I Simplifying formulae involving values of G,H at critical points.

I Differential operators applied to G,H at critical points, using
derived data, for higher order asymptotics.

ACSV: help wanted from computer algebra(ists)

Implementation

I Our basic results for smooth and multiple points are
implemented in open source software mostly written by Alex
Raichev. This was a standalone package but thanks to Daniel
Krenn it is now part of the core Sage distribution. It has a few
thousand lines of code.

I Status:
I Conversion of G/H to various forms.
I Classification of singularities.
I Setting up critical point equations on the various strata.
I Determining which critical points contribute.
I Solution of equations: find critical point explicitly, so

exponential rate is determined.
I Simplifying formulae involving values of G,H at critical points.
I Differential operators applied to G,H at critical points, using

derived data, for higher order asymptotics.

ACSV: help wanted from computer algebra(ists)

Preprocessing

Example

I Example: let H = H1H2H3 := (1− x)(1− y)(1− xy). In the
local ring at (1, 1), each factor should be in the ideal
generated by the other two (Nullstellensatz).

I In fact it is true globally, since H3 = H1 +H2 −H1H2.
(Nullstellensatz certificate).

I Thus eventually we obtain

F =
1

H1H2H3
= · · · = 2− y

(1− y)(1− xy)2
+

1

(1− x)(1− xy)2
.

I Reduction to the squarefree case is then easy and algorithmic.

I Thus we can reduce to the case where the number of factors
it at most the dimension.

ACSV: help wanted from computer algebra(ists)

Preprocessing

Example

I Example: let H = H1H2H3 := (1− x)(1− y)(1− xy). In the
local ring at (1, 1), each factor should be in the ideal
generated by the other two (Nullstellensatz).

I In fact it is true globally, since H3 = H1 +H2 −H1H2.
(Nullstellensatz certificate).

I Thus eventually we obtain

F =
1

H1H2H3
= · · · = 2− y

(1− y)(1− xy)2
+

1

(1− x)(1− xy)2
.

I Reduction to the squarefree case is then easy and algorithmic.

I Thus we can reduce to the case where the number of factors
it at most the dimension.

ACSV: help wanted from computer algebra(ists)

Preprocessing

Example

I Example: let H = H1H2H3 := (1− x)(1− y)(1− xy). In the
local ring at (1, 1), each factor should be in the ideal
generated by the other two (Nullstellensatz).

I In fact it is true globally, since H3 = H1 +H2 −H1H2.
(Nullstellensatz certificate).

I Thus eventually we obtain

F =
1

H1H2H3
= · · · = 2− y

(1− y)(1− xy)2
+

1

(1− x)(1− xy)2
.

I Reduction to the squarefree case is then easy and algorithmic.

I Thus we can reduce to the case where the number of factors
it at most the dimension.

ACSV: help wanted from computer algebra(ists)

Preprocessing

Example

I Example: let H = H1H2H3 := (1− x)(1− y)(1− xy). In the
local ring at (1, 1), each factor should be in the ideal
generated by the other two (Nullstellensatz).

I In fact it is true globally, since H3 = H1 +H2 −H1H2.
(Nullstellensatz certificate).

I Thus eventually we obtain

F =
1

H1H2H3
= · · · = 2− y

(1− y)(1− xy)2
+

1

(1− x)(1− xy)2
.

I Reduction to the squarefree case is then easy and algorithmic.

I Thus we can reduce to the case where the number of factors
it at most the dimension.

ACSV: help wanted from computer algebra(ists)

Preprocessing

Example

I Example: let H = H1H2H3 := (1− x)(1− y)(1− xy). In the
local ring at (1, 1), each factor should be in the ideal
generated by the other two (Nullstellensatz).

I In fact it is true globally, since H3 = H1 +H2 −H1H2.
(Nullstellensatz certificate).

I Thus eventually we obtain

F =
1

H1H2H3
= · · · = 2− y

(1− y)(1− xy)2
+

1

(1− x)(1− xy)2
.

I Reduction to the squarefree case is then easy and algorithmic.

I Thus we can reduce to the case where the number of factors
it at most the dimension.

ACSV: help wanted from computer algebra(ists)

Classification of singularities

Classifying singularities

I Are we in the simple case? Factor into irreducibles
H =

∏
iH

ni
i , check whether ∇Hi = 0, Hi = 0 has a solution.

I Multiple points of order k come from simultaneous vanishing
of k irreducibles (for transversality, check the log gradients
span a space of dimension k).

I I do not know how to do this in the general case. But the
local factors are branches of algebraic functions, so someone
must know something

I Eventually, want to understand the worse singularities. How
to compute a normal form for a singularity?

ACSV: help wanted from computer algebra(ists)

Classification of singularities

Classifying singularities

I Are we in the simple case? Factor into irreducibles
H =

∏
iH

ni
i , check whether ∇Hi = 0, Hi = 0 has a solution.

I Multiple points of order k come from simultaneous vanishing
of k irreducibles (for transversality, check the log gradients
span a space of dimension k).

I I do not know how to do this in the general case. But the
local factors are branches of algebraic functions, so someone
must know something

I Eventually, want to understand the worse singularities. How
to compute a normal form for a singularity?

ACSV: help wanted from computer algebra(ists)

Classification of singularities

Classifying singularities

I Are we in the simple case? Factor into irreducibles
H =

∏
iH

ni
i , check whether ∇Hi = 0, Hi = 0 has a solution.

I Multiple points of order k come from simultaneous vanishing
of k irreducibles (for transversality, check the log gradients
span a space of dimension k).

I I do not know how to do this in the general case. But the
local factors are branches of algebraic functions, so someone
must know something

I Eventually, want to understand the worse singularities. How
to compute a normal form for a singularity?

ACSV: help wanted from computer algebra(ists)

Classification of singularities

Classifying singularities

I Are we in the simple case? Factor into irreducibles
H =

∏
iH

ni
i , check whether ∇Hi = 0, Hi = 0 has a solution.

I Multiple points of order k come from simultaneous vanishing
of k irreducibles (for transversality, check the log gradients
span a space of dimension k).

I I do not know how to do this in the general case. But the
local factors are branches of algebraic functions, so someone
must know something

I Eventually, want to understand the worse singularities. How
to compute a normal form for a singularity?

ACSV: help wanted from computer algebra(ists)

Classification of singularities

Example (effect of numerator, I)

I Given F = G/H where G = 1, H1 = 3− 2x− y,
H2 = 3− x− 2y, H = H1H2.

I Here V is smooth at every point except (1, 1). We are in the
simple case.

I We obtain arr ∼ 3 by multiple point formula below.

I If we change to G = x− y, our implementation gives arr ∼ 0,
which is correct, but only by luck.

I Here G is in the ideal 〈H1, H2〉, G = H2 −H1 so

G

H
=

1

3− 2x− y
− 1

3− x− 2y
.

I Thus it is not always even obvious whether a point is smooth,
and vanishing numerator affects exponential rate.

ACSV: help wanted from computer algebra(ists)

Classification of singularities

Example (effect of numerator, I)

I Given F = G/H where G = 1, H1 = 3− 2x− y,
H2 = 3− x− 2y, H = H1H2.

I Here V is smooth at every point except (1, 1). We are in the
simple case.

I We obtain arr ∼ 3 by multiple point formula below.

I If we change to G = x− y, our implementation gives arr ∼ 0,
which is correct, but only by luck.

I Here G is in the ideal 〈H1, H2〉, G = H2 −H1 so

G

H
=

1

3− 2x− y
− 1

3− x− 2y
.

I Thus it is not always even obvious whether a point is smooth,
and vanishing numerator affects exponential rate.

ACSV: help wanted from computer algebra(ists)

Classification of singularities

Example (effect of numerator, I)

I Given F = G/H where G = 1, H1 = 3− 2x− y,
H2 = 3− x− 2y, H = H1H2.

I Here V is smooth at every point except (1, 1). We are in the
simple case.

I We obtain arr ∼ 3 by multiple point formula below.

I If we change to G = x− y, our implementation gives arr ∼ 0,
which is correct, but only by luck.

I Here G is in the ideal 〈H1, H2〉, G = H2 −H1 so

G

H
=

1

3− 2x− y
− 1

3− x− 2y
.

I Thus it is not always even obvious whether a point is smooth,
and vanishing numerator affects exponential rate.

ACSV: help wanted from computer algebra(ists)

Classification of singularities

Example (effect of numerator, I)

I Given F = G/H where G = 1, H1 = 3− 2x− y,
H2 = 3− x− 2y, H = H1H2.

I Here V is smooth at every point except (1, 1). We are in the
simple case.

I We obtain arr ∼ 3 by multiple point formula below.

I If we change to G = x− y, our implementation gives arr ∼ 0,
which is correct, but only by luck.

I Here G is in the ideal 〈H1, H2〉, G = H2 −H1 so

G

H
=

1

3− 2x− y
− 1

3− x− 2y
.

I Thus it is not always even obvious whether a point is smooth,
and vanishing numerator affects exponential rate.

ACSV: help wanted from computer algebra(ists)

Classification of singularities

Example (effect of numerator, I)

I Given F = G/H where G = 1, H1 = 3− 2x− y,
H2 = 3− x− 2y, H = H1H2.

I Here V is smooth at every point except (1, 1). We are in the
simple case.

I We obtain arr ∼ 3 by multiple point formula below.

I If we change to G = x− y, our implementation gives arr ∼ 0,
which is correct, but only by luck.

I Here G is in the ideal 〈H1, H2〉, G = H2 −H1 so

G

H
=

1

3− 2x− y
− 1

3− x− 2y
.

I Thus it is not always even obvious whether a point is smooth,
and vanishing numerator affects exponential rate.

ACSV: help wanted from computer algebra(ists)

Classification of singularities

Example (effect of numerator, I)

I Given F = G/H where G = 1, H1 = 3− 2x− y,
H2 = 3− x− 2y, H = H1H2.

I Here V is smooth at every point except (1, 1). We are in the
simple case.

I We obtain arr ∼ 3 by multiple point formula below.

I If we change to G = x− y, our implementation gives arr ∼ 0,
which is correct, but only by luck.

I Here G is in the ideal 〈H1, H2〉, G = H2 −H1 so

G

H
=

1

3− 2x− y
− 1

3− x− 2y
.

I Thus it is not always even obvious whether a point is smooth,
and vanishing numerator affects exponential rate.

ACSV: help wanted from computer algebra(ists)

Classification of singularities

Example (effect of numerator, II)

I Here F = G/H where G = x− y, H1 = 3− 2x− y2,
H2 = 3− x2 − 2y2, H = H1H2.

I Again V is clearly smooth at every point except (1, 1).

I Our current implementation gives arr ∼ 0, but this is wrong.

I Here G is not in the ideal 〈H1, H2〉 of the polynomial ring.

I We need to go to the local analytic ring. Ring theoretic
arguments (Nullstellensatz, Noetherianity) show that G must
lie in the ideal generated by H1, H2 and a simplification again
occurs. Again we will have smooth point behaviour.

I How to do this algorithmically?

ACSV: help wanted from computer algebra(ists)

Classification of singularities

Example (effect of numerator, II)

I Here F = G/H where G = x− y, H1 = 3− 2x− y2,
H2 = 3− x2 − 2y2, H = H1H2.

I Again V is clearly smooth at every point except (1, 1).

I Our current implementation gives arr ∼ 0, but this is wrong.

I Here G is not in the ideal 〈H1, H2〉 of the polynomial ring.

I We need to go to the local analytic ring. Ring theoretic
arguments (Nullstellensatz, Noetherianity) show that G must
lie in the ideal generated by H1, H2 and a simplification again
occurs. Again we will have smooth point behaviour.

I How to do this algorithmically?

ACSV: help wanted from computer algebra(ists)

Classification of singularities

Example (effect of numerator, II)

I Here F = G/H where G = x− y, H1 = 3− 2x− y2,
H2 = 3− x2 − 2y2, H = H1H2.

I Again V is clearly smooth at every point except (1, 1).

I Our current implementation gives arr ∼ 0, but this is wrong.

I Here G is not in the ideal 〈H1, H2〉 of the polynomial ring.

I We need to go to the local analytic ring. Ring theoretic
arguments (Nullstellensatz, Noetherianity) show that G must
lie in the ideal generated by H1, H2 and a simplification again
occurs. Again we will have smooth point behaviour.

I How to do this algorithmically?

ACSV: help wanted from computer algebra(ists)

Classification of singularities

Example (effect of numerator, II)

I Here F = G/H where G = x− y, H1 = 3− 2x− y2,
H2 = 3− x2 − 2y2, H = H1H2.

I Again V is clearly smooth at every point except (1, 1).

I Our current implementation gives arr ∼ 0, but this is wrong.

I Here G is not in the ideal 〈H1, H2〉 of the polynomial ring.

I We need to go to the local analytic ring. Ring theoretic
arguments (Nullstellensatz, Noetherianity) show that G must
lie in the ideal generated by H1, H2 and a simplification again
occurs. Again we will have smooth point behaviour.

I How to do this algorithmically?

ACSV: help wanted from computer algebra(ists)

Classification of singularities

Example (effect of numerator, II)

I Here F = G/H where G = x− y, H1 = 3− 2x− y2,
H2 = 3− x2 − 2y2, H = H1H2.

I Again V is clearly smooth at every point except (1, 1).

I Our current implementation gives arr ∼ 0, but this is wrong.

I Here G is not in the ideal 〈H1, H2〉 of the polynomial ring.

I We need to go to the local analytic ring. Ring theoretic
arguments (Nullstellensatz, Noetherianity) show that G must
lie in the ideal generated by H1, H2 and a simplification again
occurs. Again we will have smooth point behaviour.

I How to do this algorithmically?

ACSV: help wanted from computer algebra(ists)

Classification of singularities

Example (effect of numerator, II)

I Here F = G/H where G = x− y, H1 = 3− 2x− y2,
H2 = 3− x2 − 2y2, H = H1H2.

I Again V is clearly smooth at every point except (1, 1).

I Our current implementation gives arr ∼ 0, but this is wrong.

I Here G is not in the ideal 〈H1, H2〉 of the polynomial ring.

I We need to go to the local analytic ring. Ring theoretic
arguments (Nullstellensatz, Noetherianity) show that G must
lie in the ideal generated by H1, H2 and a simplification again
occurs. Again we will have smooth point behaviour.

I How to do this algorithmically?

ACSV: help wanted from computer algebra(ists)

Classification of singularities

Example (effect of numerator, III)

I If the multiple point is not isolated (includes smooth points),
vanishing numerator does not affect exponential rate, except
if all coefficients are zero.

I I am not sure how to detect this latter case in general.

I For example, (x− y)/(1− x− y) has identically zero diagonal.
The contributing point for the main diagonal is (1/2, 1/2) and
the smooth point formula will yield 0 for each coefficient.

I If we perturb the direction slightly, we obtain similar results to
above, and the first order asymptotic varies continuously in
direction.

I Our implementation only tells us, with increasing effort, that
each coefficient in the asymptotic expansion is zero. It would
be nice to be able to detect this in a preprocessing step.

ACSV: help wanted from computer algebra(ists)

Classification of singularities

Example (effect of numerator, III)

I If the multiple point is not isolated (includes smooth points),
vanishing numerator does not affect exponential rate, except
if all coefficients are zero.

I I am not sure how to detect this latter case in general.

I For example, (x− y)/(1− x− y) has identically zero diagonal.
The contributing point for the main diagonal is (1/2, 1/2) and
the smooth point formula will yield 0 for each coefficient.

I If we perturb the direction slightly, we obtain similar results to
above, and the first order asymptotic varies continuously in
direction.

I Our implementation only tells us, with increasing effort, that
each coefficient in the asymptotic expansion is zero. It would
be nice to be able to detect this in a preprocessing step.

ACSV: help wanted from computer algebra(ists)

Classification of singularities

Example (effect of numerator, III)

I If the multiple point is not isolated (includes smooth points),
vanishing numerator does not affect exponential rate, except
if all coefficients are zero.

I I am not sure how to detect this latter case in general.

I For example, (x− y)/(1− x− y) has identically zero diagonal.
The contributing point for the main diagonal is (1/2, 1/2) and
the smooth point formula will yield 0 for each coefficient.

I If we perturb the direction slightly, we obtain similar results to
above, and the first order asymptotic varies continuously in
direction.

I Our implementation only tells us, with increasing effort, that
each coefficient in the asymptotic expansion is zero. It would
be nice to be able to detect this in a preprocessing step.

ACSV: help wanted from computer algebra(ists)

Classification of singularities

Example (effect of numerator, III)

I If the multiple point is not isolated (includes smooth points),
vanishing numerator does not affect exponential rate, except
if all coefficients are zero.

I I am not sure how to detect this latter case in general.

I For example, (x− y)/(1− x− y) has identically zero diagonal.
The contributing point for the main diagonal is (1/2, 1/2) and
the smooth point formula will yield 0 for each coefficient.

I If we perturb the direction slightly, we obtain similar results to
above, and the first order asymptotic varies continuously in
direction.

I Our implementation only tells us, with increasing effort, that
each coefficient in the asymptotic expansion is zero. It would
be nice to be able to detect this in a preprocessing step.

ACSV: help wanted from computer algebra(ists)

Classification of singularities

Example (effect of numerator, III)

I If the multiple point is not isolated (includes smooth points),
vanishing numerator does not affect exponential rate, except
if all coefficients are zero.

I I am not sure how to detect this latter case in general.

I For example, (x− y)/(1− x− y) has identically zero diagonal.
The contributing point for the main diagonal is (1/2, 1/2) and
the smooth point formula will yield 0 for each coefficient.

I If we perturb the direction slightly, we obtain similar results to
above, and the first order asymptotic varies continuously in
direction.

I Our implementation only tells us, with increasing effort, that
each coefficient in the asymptotic expansion is zero. It would
be nice to be able to detect this in a preprocessing step.

ACSV: help wanted from computer algebra(ists)

Classification of singularities

Example (local factorization of lemniscate)

I Given F = 1/H where H is irreducible, given by H(x, y) =
19− 20x− 20y + 5x2 + 14xy + 5y2 − 2x2y − 2xy2 + x2y2.

I Here V is smooth at every point except (1, 1), which we see
by solving the system {H = 0,∇H = 0}.

I At (1, 1), changing variables to h(u, v) := H(1 + u, 1 + v), we
see that h(u, v) = 4u2 + 10uv + 4v2 + C(u, v) where C has
no terms of degree less than 3.

I The quadratic part factors into distinct factors, showing that
(1, 1) is a transverse multiple point.

I The current implementation does not deal with this at all.

ACSV: help wanted from computer algebra(ists)

Classification of singularities

Example (local factorization of lemniscate)

I Given F = 1/H where H is irreducible, given by H(x, y) =
19− 20x− 20y + 5x2 + 14xy + 5y2 − 2x2y − 2xy2 + x2y2.

I Here V is smooth at every point except (1, 1), which we see
by solving the system {H = 0,∇H = 0}.

I At (1, 1), changing variables to h(u, v) := H(1 + u, 1 + v), we
see that h(u, v) = 4u2 + 10uv + 4v2 + C(u, v) where C has
no terms of degree less than 3.

I The quadratic part factors into distinct factors, showing that
(1, 1) is a transverse multiple point.

I The current implementation does not deal with this at all.

ACSV: help wanted from computer algebra(ists)

Classification of singularities

Example (local factorization of lemniscate)

I Given F = 1/H where H is irreducible, given by H(x, y) =
19− 20x− 20y + 5x2 + 14xy + 5y2 − 2x2y − 2xy2 + x2y2.

I Here V is smooth at every point except (1, 1), which we see
by solving the system {H = 0,∇H = 0}.

I At (1, 1), changing variables to h(u, v) := H(1 + u, 1 + v), we
see that h(u, v) = 4u2 + 10uv + 4v2 + C(u, v) where C has
no terms of degree less than 3.

I The quadratic part factors into distinct factors, showing that
(1, 1) is a transverse multiple point.

I The current implementation does not deal with this at all.

ACSV: help wanted from computer algebra(ists)

Classification of singularities

Example (local factorization of lemniscate)

I Given F = 1/H where H is irreducible, given by H(x, y) =
19− 20x− 20y + 5x2 + 14xy + 5y2 − 2x2y − 2xy2 + x2y2.

I Here V is smooth at every point except (1, 1), which we see
by solving the system {H = 0,∇H = 0}.

I At (1, 1), changing variables to h(u, v) := H(1 + u, 1 + v), we
see that h(u, v) = 4u2 + 10uv + 4v2 + C(u, v) where C has
no terms of degree less than 3.

I The quadratic part factors into distinct factors, showing that
(1, 1) is a transverse multiple point.

I The current implementation does not deal with this at all.

ACSV: help wanted from computer algebra(ists)

Classification of singularities

Example (local factorization of lemniscate)

I Given F = 1/H where H is irreducible, given by H(x, y) =
19− 20x− 20y + 5x2 + 14xy + 5y2 − 2x2y − 2xy2 + x2y2.

I Here V is smooth at every point except (1, 1), which we see
by solving the system {H = 0,∇H = 0}.

I At (1, 1), changing variables to h(u, v) := H(1 + u, 1 + v), we
see that h(u, v) = 4u2 + 10uv + 4v2 + C(u, v) where C has
no terms of degree less than 3.

I The quadratic part factors into distinct factors, showing that
(1, 1) is a transverse multiple point.

I The current implementation does not deal with this at all.

ACSV: help wanted from computer algebra(ists)

Computing critical points

Critical point equations

I A smooth point of V is critical for direction r iff the outward
normal to logV is parallel to r. In other words, for some
λ ∈ C, z∗ solves

∇logH(z) := (z1∂H/∂z1, . . . , zd∂H/∂Hd) = λr

H(z) = 0.

This gives d+ 1 polynomial equations in d+ 1 unknowns.

I For multiple points given by k factors intersecting, there is a
related polynomial system expressing the vanishing of all
minors of order k + 1 of a k + 1 by d matrix. This is not yet
implemented, but is easy provided we can deal with
factorization of H (e.g. in the simple case).

I In fact λ ∈ R which helps to eliminate some noncontributing
critical points.

ACSV: help wanted from computer algebra(ists)

Computing critical points

Critical point equations

I A smooth point of V is critical for direction r iff the outward
normal to logV is parallel to r. In other words, for some
λ ∈ C, z∗ solves

∇logH(z) := (z1∂H/∂z1, . . . , zd∂H/∂Hd) = λr

H(z) = 0.

This gives d+ 1 polynomial equations in d+ 1 unknowns.

I For multiple points given by k factors intersecting, there is a
related polynomial system expressing the vanishing of all
minors of order k + 1 of a k + 1 by d matrix. This is not yet
implemented, but is easy provided we can deal with
factorization of H (e.g. in the simple case).

I In fact λ ∈ R which helps to eliminate some noncontributing
critical points.

ACSV: help wanted from computer algebra(ists)

Computing critical points

Critical point equations

I A smooth point of V is critical for direction r iff the outward
normal to logV is parallel to r. In other words, for some
λ ∈ C, z∗ solves

∇logH(z) := (z1∂H/∂z1, . . . , zd∂H/∂Hd) = λr

H(z) = 0.

This gives d+ 1 polynomial equations in d+ 1 unknowns.

I For multiple points given by k factors intersecting, there is a
related polynomial system expressing the vanishing of all
minors of order k + 1 of a k + 1 by d matrix. This is not yet
implemented, but is easy provided we can deal with
factorization of H (e.g. in the simple case).

I In fact λ ∈ R which helps to eliminate some noncontributing
critical points.

ACSV: help wanted from computer algebra(ists)

Computing critical points

Example (almost trivial)

I G = 1, H = 1− x− y.

I ∇logH = (x, y) so clearly all points are smooth.

I (x, y) = λ(r, s), H = 0 so x = r/(r + s), y = s/(r + s), so
exponential rate (r + s)r+s/(rrss). Note solution is unique.

I Leading term easily computed to equal√
r + s

2πrs
.

I For higher order terms, even this example should be done by
computer algebra. For example

arr ∼ 4r
[

1√
πr
− 1

8
√
πr3

+
1

128
√
πr5

]
.

ACSV: help wanted from computer algebra(ists)

Computing critical points

Example (almost trivial)

I G = 1, H = 1− x− y.

I ∇logH = (x, y) so clearly all points are smooth.

I (x, y) = λ(r, s), H = 0 so x = r/(r + s), y = s/(r + s), so
exponential rate (r + s)r+s/(rrss). Note solution is unique.

I Leading term easily computed to equal√
r + s

2πrs
.

I For higher order terms, even this example should be done by
computer algebra. For example

arr ∼ 4r
[

1√
πr
− 1

8
√
πr3

+
1

128
√
πr5

]
.

ACSV: help wanted from computer algebra(ists)

Computing critical points

Example (almost trivial)

I G = 1, H = 1− x− y.

I ∇logH = (x, y) so clearly all points are smooth.

I (x, y) = λ(r, s), H = 0 so x = r/(r + s), y = s/(r + s), so
exponential rate (r + s)r+s/(rrss). Note solution is unique.

I Leading term easily computed to equal√
r + s

2πrs
.

I For higher order terms, even this example should be done by
computer algebra. For example

arr ∼ 4r
[

1√
πr
− 1

8
√
πr3

+
1

128
√
πr5

]
.

ACSV: help wanted from computer algebra(ists)

Computing critical points

Example (almost trivial)

I G = 1, H = 1− x− y.

I ∇logH = (x, y) so clearly all points are smooth.

I (x, y) = λ(r, s), H = 0 so x = r/(r + s), y = s/(r + s), so
exponential rate (r + s)r+s/(rrss). Note solution is unique.

I Leading term easily computed to equal√
r + s

2πrs
.

I For higher order terms, even this example should be done by
computer algebra. For example

arr ∼ 4r
[

1√
πr
− 1

8
√
πr3

+
1

128
√
πr5

]
.

ACSV: help wanted from computer algebra(ists)

Computing critical points

Example (almost trivial)

I G = 1, H = 1− x− y.

I ∇logH = (x, y) so clearly all points are smooth.

I (x, y) = λ(r, s), H = 0 so x = r/(r + s), y = s/(r + s), so
exponential rate (r + s)r+s/(rrss). Note solution is unique.

I Leading term easily computed to equal√
r + s

2πrs
.

I For higher order terms, even this example should be done by
computer algebra. For example

arr ∼ 4r
[

1√
πr
− 1

8
√
πr3

+
1

128
√
πr5

]
.

ACSV: help wanted from computer algebra(ists)

Some examples

Example (easy)

I General (symbolic) direction for previous example: 1 second.

I Polyominoes: fixed direction in 1 second.

I Most smooth problems in 2 variables can be done within a few
seconds for up to order 3 and many to higher order.

I For 3 or more variables, even order 3 can be slow.

I Double point examples in 2 variables are very easy, even with
vanishing numerator.

ACSV: help wanted from computer algebra(ists)

Some examples

Example (easy)

I General (symbolic) direction for previous example: 1 second.

I Polyominoes: fixed direction in 1 second.

I Most smooth problems in 2 variables can be done within a few
seconds for up to order 3 and many to higher order.

I For 3 or more variables, even order 3 can be slow.

I Double point examples in 2 variables are very easy, even with
vanishing numerator.

ACSV: help wanted from computer algebra(ists)

Some examples

Example (easy)

I General (symbolic) direction for previous example: 1 second.

I Polyominoes: fixed direction in 1 second.

I Most smooth problems in 2 variables can be done within a few
seconds for up to order 3 and many to higher order.

I For 3 or more variables, even order 3 can be slow.

I Double point examples in 2 variables are very easy, even with
vanishing numerator.

ACSV: help wanted from computer algebra(ists)

Some examples

Example (easy)

I General (symbolic) direction for previous example: 1 second.

I Polyominoes: fixed direction in 1 second.

I Most smooth problems in 2 variables can be done within a few
seconds for up to order 3 and many to higher order.

I For 3 or more variables, even order 3 can be slow.

I Double point examples in 2 variables are very easy, even with
vanishing numerator.

ACSV: help wanted from computer algebra(ists)

Some examples

Example (easy)

I General (symbolic) direction for previous example: 1 second.

I Polyominoes: fixed direction in 1 second.

I Most smooth problems in 2 variables can be done within a few
seconds for up to order 3 and many to higher order.

I For 3 or more variables, even order 3 can be slow.

I Double point examples in 2 variables are very easy, even with
vanishing numerator.

ACSV: help wanted from computer algebra(ists)

Some examples

Example (harder)

I An interesting lattice path problem yields

G = (1 + x)(1− 2t(1 + x2))

H = (1− y)(1− t(1 + x2 + xy2))(1− t(1 + x2))

I Critical points: we have (1, 1, 1/3), (1,
√
2, 14), (1,−

√
2, 14)

(−1, i
√
2, 14), (−1, i

√
2, 14).

I Automatic detection of contributing points is not
implemented. In this case the highest point (1, 1, 1/3) does
not contribute but the others do.

I First order asymptotic is zero at smooth point (1,
√
2, 14).

Second order computation fails to halt in reasonable time
(hours).

ACSV: help wanted from computer algebra(ists)

Some examples

Example (harder)

I An interesting lattice path problem yields

G = (1 + x)(1− 2t(1 + x2))

H = (1− y)(1− t(1 + x2 + xy2))(1− t(1 + x2))

I Critical points: we have (1, 1, 1/3), (1,
√
2, 14), (1,−

√
2, 14)

(−1, i
√
2, 14), (−1, i

√
2, 14).

I Automatic detection of contributing points is not
implemented. In this case the highest point (1, 1, 1/3) does
not contribute but the others do.

I First order asymptotic is zero at smooth point (1,
√
2, 14).

Second order computation fails to halt in reasonable time
(hours).

ACSV: help wanted from computer algebra(ists)

Some examples

Example (harder)

I An interesting lattice path problem yields

G = (1 + x)(1− 2t(1 + x2))

H = (1− y)(1− t(1 + x2 + xy2))(1− t(1 + x2))

I Critical points: we have (1, 1, 1/3), (1,
√
2, 14), (1,−

√
2, 14)

(−1, i
√
2, 14), (−1, i

√
2, 14).

I Automatic detection of contributing points is not
implemented. In this case the highest point (1, 1, 1/3) does
not contribute but the others do.

I First order asymptotic is zero at smooth point (1,
√
2, 14).

Second order computation fails to halt in reasonable time
(hours).

ACSV: help wanted from computer algebra(ists)

Some examples

Example (harder)

I An interesting lattice path problem yields

G = (1 + x)(1− 2t(1 + x2))

H = (1− y)(1− t(1 + x2 + xy2))(1− t(1 + x2))

I Critical points: we have (1, 1, 1/3), (1,
√
2, 14), (1,−

√
2, 14)

(−1, i
√
2, 14), (−1, i

√
2, 14).

I Automatic detection of contributing points is not
implemented. In this case the highest point (1, 1, 1/3) does
not contribute but the others do.

I First order asymptotic is zero at smooth point (1,
√
2, 14).

Second order computation fails to halt in reasonable time
(hours).

ACSV: help wanted from computer algebra(ists)

Some examples

Why so slow?

I The problem in the previous example seems to be the multiple
factors in H. In this case the positive contributing point is a
zero of only one factor H2 and is smooth. If we rewrite
G/H = (G/H1H3)/H2, everything works fine, giving answer
at that point

(2
√
2)r

πr2

(
8− 2

√
2
)(

3− 2
√
2
) .

I Similarly the current method for computing critical points
gives completely spurious points such as (4, 1, 1/17) when run
on G/H.

I Thus factorization is very important, which brings us back to
the issues discussed earlier.

ACSV: help wanted from computer algebra(ists)

Some examples

Why so slow?

I The problem in the previous example seems to be the multiple
factors in H. In this case the positive contributing point is a
zero of only one factor H2 and is smooth. If we rewrite
G/H = (G/H1H3)/H2, everything works fine, giving answer
at that point

(2
√
2)r

πr2

(
8− 2

√
2
)(

3− 2
√
2
) .

I Similarly the current method for computing critical points
gives completely spurious points such as (4, 1, 1/17) when run
on G/H.

I Thus factorization is very important, which brings us back to
the issues discussed earlier.

ACSV: help wanted from computer algebra(ists)

Some examples

Why so slow?

I The problem in the previous example seems to be the multiple
factors in H. In this case the positive contributing point is a
zero of only one factor H2 and is smooth. If we rewrite
G/H = (G/H1H3)/H2, everything works fine, giving answer
at that point

(2
√
2)r

πr2

(
8− 2

√
2
)(

3− 2
√
2
) .

I Similarly the current method for computing critical points
gives completely spurious points such as (4, 1, 1/17) when run
on G/H.

I Thus factorization is very important, which brings us back to
the issues discussed earlier.

ACSV: help wanted from computer algebra(ists)

Higher order terms

Asymptotic formulae — higher terms

I We change variable by z = z∗ exp(iθ) and derive asymptotics
of a Fourier-Laplace integral I(λ).

I The first term is usually easy to compute but others can be
difficult, and they are necessary in many applications.

I This appears to be the main performance bottleneck in our
current implementation.

I For smooth and multiple points we have used an explicit
formula of Hörmander.

I An alternative approach involving solving a system of
equations may also be practical. We have not yet explored it.

ACSV: help wanted from computer algebra(ists)

Higher order terms

Asymptotic formulae — higher terms

I We change variable by z = z∗ exp(iθ) and derive asymptotics
of a Fourier-Laplace integral I(λ).

I The first term is usually easy to compute but others can be
difficult, and they are necessary in many applications.

I This appears to be the main performance bottleneck in our
current implementation.

I For smooth and multiple points we have used an explicit
formula of Hörmander.

I An alternative approach involving solving a system of
equations may also be practical. We have not yet explored it.

ACSV: help wanted from computer algebra(ists)

Higher order terms

Asymptotic formulae — higher terms

I We change variable by z = z∗ exp(iθ) and derive asymptotics
of a Fourier-Laplace integral I(λ).

I The first term is usually easy to compute but others can be
difficult, and they are necessary in many applications.

I This appears to be the main performance bottleneck in our
current implementation.

I For smooth and multiple points we have used an explicit
formula of Hörmander.

I An alternative approach involving solving a system of
equations may also be practical. We have not yet explored it.

ACSV: help wanted from computer algebra(ists)

Higher order terms

Asymptotic formulae — higher terms

I We change variable by z = z∗ exp(iθ) and derive asymptotics
of a Fourier-Laplace integral I(λ).

I The first term is usually easy to compute but others can be
difficult, and they are necessary in many applications.

I This appears to be the main performance bottleneck in our
current implementation.

I For smooth and multiple points we have used an explicit
formula of Hörmander.

I An alternative approach involving solving a system of
equations may also be practical. We have not yet explored it.

ACSV: help wanted from computer algebra(ists)

Higher order terms

Asymptotic formulae — higher terms

I We change variable by z = z∗ exp(iθ) and derive asymptotics
of a Fourier-Laplace integral I(λ).

I The first term is usually easy to compute but others can be
difficult, and they are necessary in many applications.

I This appears to be the main performance bottleneck in our
current implementation.

I For smooth and multiple points we have used an explicit
formula of Hörmander.

I An alternative approach involving solving a system of
equations may also be practical. We have not yet explored it.

ACSV: help wanted from computer algebra(ists)

Higher order terms

Hörmander’s explicit formula
For an isolated nondegenerate stationary point 0 in dimension d,

I(λ) ∼
(
det

(
λf ′′(0)

2π

))−1/2∑
k≥0

λ−kLk(A, f)

where Lk is a differential operator of order 2k evaluated at 0:

f(t) = f(t)− (1/2)tf ′′(0)tT

D =
∑
a,b

(f ′′(0)−1)a,b(−i∂a)(−i∂b)

Lk(A, f) =
∑
l≤2k

Dl+k(Af l)(0)

(−1)k2l+kl!(l + k)!
.

For example L0(A, f) = A,
L1(A, f) = −D(A)/2−D2(Af)/8−D3(Af2)/48.

ACSV: help wanted from computer algebra(ists)

Higher order terms

Computing better with Hörmander’s formula

I The current Sage code struggles when d = 3, k = 3, and
sometimes even for smaller parameters. My guess is that we
should be able to reorganize the computation to be more
efficient.

I Note that f vanishes to order 3 at 0, so Af l vanishes to order

3l, and D is a 2nd order linear operator. When Dl+k is applied
to Af l and evaluated at 0, many terms are automatically zero.

I Maybe we can rewrite

∑
k

λ−kLk(A, f) =
∑
l

∑
2k≥l

λ−k
Dl+k(Af l)(0)

(−1)k2l+kl!(l + k)!
.

ACSV: help wanted from computer algebra(ists)

Higher order terms

Computing better with Hörmander’s formula

I The current Sage code struggles when d = 3, k = 3, and
sometimes even for smaller parameters. My guess is that we
should be able to reorganize the computation to be more
efficient.

I Note that f vanishes to order 3 at 0, so Af l vanishes to order

3l, and D is a 2nd order linear operator. When Dl+k is applied
to Af l and evaluated at 0, many terms are automatically zero.

I Maybe we can rewrite

∑
k

λ−kLk(A, f) =
∑
l

∑
2k≥l

λ−k
Dl+k(Af l)(0)

(−1)k2l+kl!(l + k)!
.

ACSV: help wanted from computer algebra(ists)

Higher order terms

Computing better with Hörmander’s formula

I The current Sage code struggles when d = 3, k = 3, and
sometimes even for smaller parameters. My guess is that we
should be able to reorganize the computation to be more
efficient.

I Note that f vanishes to order 3 at 0, so Af l vanishes to order

3l, and D is a 2nd order linear operator. When Dl+k is applied
to Af l and evaluated at 0, many terms are automatically zero.

I Maybe we can rewrite

∑
k

λ−kLk(A, f) =
∑
l

∑
2k≥l

λ−k
Dl+k(Af l)(0)

(−1)k2l+kl!(l + k)!
.

	Preprocessing
	Classification of singularities
	Computing critical points
	Some examples
	Higher order terms

