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Example

How many n-step lattice walks are there, if walks start from the
origin, are confined to the first quadrant, and take steps in
{S,NE,NW}? Call this an.

Now reverse the steps to get {N,SE, SW}; call the analogous
quantity bn.

Conjectured by Bostan & Kauers (2009):

an ∼ 3n
√

3

4πn

bn ∼ (2
√

2)n
θ(n)

πn2

θ(n) =

{
24
√

2 if n is even

32 if n is odd.

Such constrained walk questions have been very actively studied in the
last decade. They yield many natural examples of D-finite sequences.
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Overview — walks

Consider nearest-neighbour walks in Z2, defined by a set
S ⊆ {−1, 0, 1}2 \ {0} of short steps.

We can consider restrictions, e.g. halfspace, nonnegative quadrant,
return to x or y-axis, return to the origin.

We keep track of the endpoint, and also the length. This gives a
trivariate sequence ar,s,n with generating function (GF)

C(x, y, t) :=
∑
r,s,n

ar,s,nx
rystn.

Summing over r, s gives a univariate series
C(1, 1, t) := f(t) =

∑
n fnt

n.

We seek in particular the asymptotics of fn.
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Interlude - a hierarchy of generating functions

Rational functions — constant coefficient linear recurrence for
coefficients. Example: Fibonacci numbers.

Algebraic functions — diagonals of rational functions. Example:
Catalan numbers.

D-finite functions (satisfy linear ODE with polynomial coefficients) —
polynomial coefficient linear recurrence for coefficients. Example:(
3n
n

)
, Bessel functions.

Differentially algebraic functions (nonlinear ODE). Example: Bell
numbers (egf).

Worse! Differentially transcendental. Example: Γ(z), Bell numbers
(ogf).
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A hierarchy of generating functions from lattice walks

Unrestricted walks — rational functions — have been understood
“forever”.

Walks confined to a halfspace — algebraic functions — understood
since Bousquet-Mélou & Petkovšek (2000), using the kernel method.

23 classes of walks confined to a quadrant — D-finite functions —
reasonably well understood.

56 quadrant classes, steps that are not small — non D-finite functions
— poorly understood.
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Previous results Quadrant walks

Previous work on walks in the quadrant, I

Bousquet-Mélou & Mishna (2010): there are 79 inequivalent
nontrivial cases.

They introduced a symmetry group G(S) and showed that it is finite
in exactly 23 cases.

They used finiteness to show for 22 cases that C(x, y, t) is D-finite.
For 19 of these, used the orbit sum method and for 3 more, the half
orbit sum method.

Bostan & Kauers (2010) explicitly showed that for the 23rd case
(Gessel walks), f(t) is algebraic (and hence D-finite).

In the other 56 cases, f(t) is indeed apparently not D-finite. So there
are 23 nice inequivalent cases to discuss now.

Mark C. Wilson Higher Dimensional Lattice Walks 2020-04-22 6 / 24



Previous results Quadrant walks

Previous work on walks in the quadrant, I

Bousquet-Mélou & Mishna (2010): there are 79 inequivalent
nontrivial cases.

They introduced a symmetry group G(S) and showed that it is finite
in exactly 23 cases.

They used finiteness to show for 22 cases that C(x, y, t) is D-finite.
For 19 of these, used the orbit sum method and for 3 more, the half
orbit sum method.

Bostan & Kauers (2010) explicitly showed that for the 23rd case
(Gessel walks), f(t) is algebraic (and hence D-finite).

In the other 56 cases, f(t) is indeed apparently not D-finite. So there
are 23 nice inequivalent cases to discuss now.

Mark C. Wilson Higher Dimensional Lattice Walks 2020-04-22 6 / 24



Previous results Quadrant walks

Previous work on walks in the quadrant, I

Bousquet-Mélou & Mishna (2010): there are 79 inequivalent
nontrivial cases.

They introduced a symmetry group G(S) and showed that it is finite
in exactly 23 cases.

They used finiteness to show for 22 cases that C(x, y, t) is D-finite.
For 19 of these, used the orbit sum method and for 3 more, the half
orbit sum method.

Bostan & Kauers (2010) explicitly showed that for the 23rd case
(Gessel walks), f(t) is algebraic (and hence D-finite).

In the other 56 cases, f(t) is indeed apparently not D-finite. So there
are 23 nice inequivalent cases to discuss now.

Mark C. Wilson Higher Dimensional Lattice Walks 2020-04-22 6 / 24



Previous results Quadrant walks

Previous work on walks in the quadrant, I

Bousquet-Mélou & Mishna (2010): there are 79 inequivalent
nontrivial cases.

They introduced a symmetry group G(S) and showed that it is finite
in exactly 23 cases.

They used finiteness to show for 22 cases that C(x, y, t) is D-finite.
For 19 of these, used the orbit sum method and for 3 more, the half
orbit sum method.

Bostan & Kauers (2010) explicitly showed that for the 23rd case
(Gessel walks), f(t) is algebraic (and hence D-finite).

In the other 56 cases, f(t) is indeed apparently not D-finite. So there
are 23 nice inequivalent cases to discuss now.

Mark C. Wilson Higher Dimensional Lattice Walks 2020-04-22 6 / 24



Previous results Quadrant walks

Previous work on walks in the quadrant, I

Bousquet-Mélou & Mishna (2010): there are 79 inequivalent
nontrivial cases.

They introduced a symmetry group G(S) and showed that it is finite
in exactly 23 cases.

They used finiteness to show for 22 cases that C(x, y, t) is D-finite.
For 19 of these, used the orbit sum method and for 3 more, the half
orbit sum method.

Bostan & Kauers (2010) explicitly showed that for the 23rd case
(Gessel walks), f(t) is algebraic (and hence D-finite).

In the other 56 cases, f(t) is indeed apparently not D-finite. So there
are 23 nice inequivalent cases to discuss now.

Mark C. Wilson Higher Dimensional Lattice Walks 2020-04-22 6 / 24



Previous results Quadrant walks

Previous work on walks in the quadrant, II

Bostan & Kauers (2009): conjectured asymptotics for fn in the 23
nice cases. Four of these were dealt with by direct attack.

Bostan, Chyzak, van Hoeij, Kauers & Pech (2016): expressed f(t) in
terms of hypergeometric integrals in 19 of these cases.

Melczer & Mishna (2014): derived rigorous asymptotics for fn in 4
cases.

Open: proof of asymptotics of fn for 15 cases. We solve that here via
a unified approach using ACSV methodology.
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Previous results Generating function analysis

Standing assumptions

We use boldface to denote a multi-index: z = (z1, . . . , zd),
r = (r1, . . . , rd). Similarly zr = zr11 . . . zrdd .

A (multivariate) sequence is a function a : Nd → C for some fixed d.
Usually write ar instead of a(r).

The generating function (GF) is the formal power series

F (z) =
∑
r∈Nd

arz
r.

Assume F (z) = G(z)/H(z) where G,H are polynomials. The
singular variety V := {z : H(z) = 0} consists of poles.

To avoid discussing complicated topology, assume all coefficients of F
are nonnegative.
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Previous results Generating function analysis

Outline of ACSV project results

Given a direction r, to compute asymptotics of ar in that direction we
first restrict to a variety crit(r) of critical points.

A subset contrib(r) ⊆ crit(r) contributes to asymptotics.

For p ∈ contrib(r), there is a full asymptotic series A(p) depending
on the type of singularity at p. Each term is computable from finitely
many derivatives of G and H at p.

This yields an asymptotic expansion

ar ∼
∑

p∈contrib(r)

p−rA(p)

that is uniform on compact subsets of directions, provided the
geometry at p does not change.
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Previous results Generating function analysis

Smooth formulae for general d

z∗ turns out to be a critical point for r iff the outward normal to
logV is parallel to r. In other words, for some λ ∈ C, z∗ solves

∇logH(z) := (z1H1, . . . , zdHd) = λr, H(z) = 0.

ar ∼ z∗(r)−r

√
1

(2π|r|)(d−1)/2κ(z∗)

G(z∗)

| ∇logH(z∗)|

where |r| =
∑

i ri and κ is the Gaussian curvature of logV at log z∗.

The Gaussian curvature can be computed explicitly in terms of
derivatives of H to second order.

The formula comes from analysis of certain highly oscillatory
Fourier-Laplace integrals.
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Previous results Generating function analysis

Hörmander’s explicit formula

The asymptotic contribution of an isolated nondegenerate stationary point
is (

det

(
λf ′′(0)

2π

))−1/2∑
k≥0

λ−kLk(A, f)

where Lk is a differential operator of order 2k evaluated at 0. Specifically,

f(t) = f(t)− (1/2)tf ′′(0)tT

D =
∑
a,b

(f ′′(0)−1)a,b(−i∂a)(−i∂b)

Lk(A, f) =
∑
l≤2k

Dl+k(Af l)(0)

(−1)k2l+kl!(l + k)!
.
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Our results

Outline of approach

Can in fact get results for weighted walks in general dimension.

Express fn as diagonal coefficients of d+ 1-variable rational GF F ,
using the kernel method, orbit sum method, and series manipulations.

Use mvGF theory of Pemantle and Wilson to extract asymptotics.

Difficulty 1: singular set of F causes problems and F may have
nonpositive coefficients.

Difficulty 2: numerator often vanishes at points contributing to
asymptotics, making general formulae hard to derive.

Solution 1: ask Mireille Bousquet-Mélou!

Solution 2: work hard.
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Our results

General dimension

Melczer-Mishna analysed the case where S is symmetric over all d
axes.

We analyse the case with d− 1 axes of symmetry (with weights
having the same symmetry).

Examples show that with fewer than d− 1 symmetries, the GF is not
D-finite, so such an approach must fail.

We write S(z) =
∑

i∈S wiz
i = zdB +Q+ zdA where z = z−1 and

A,B,Q are independent of zd.

The drift is the difference B(1)−A(1) between the weight of
positive and negative steps in the asymmetric direction.

Mark C. Wilson Higher Dimensional Lattice Walks 2020-04-22 13 / 24



Our results

General dimension

Melczer-Mishna analysed the case where S is symmetric over all d
axes.

We analyse the case with d− 1 axes of symmetry (with weights
having the same symmetry).

Examples show that with fewer than d− 1 symmetries, the GF is not
D-finite, so such an approach must fail.

We write S(z) =
∑

i∈S wiz
i = zdB +Q+ zdA where z = z−1 and

A,B,Q are independent of zd.

The drift is the difference B(1)−A(1) between the weight of
positive and negative steps in the asymmetric direction.

Mark C. Wilson Higher Dimensional Lattice Walks 2020-04-22 13 / 24



Our results

General dimension

Melczer-Mishna analysed the case where S is symmetric over all d
axes.

We analyse the case with d− 1 axes of symmetry (with weights
having the same symmetry).

Examples show that with fewer than d− 1 symmetries, the GF is not
D-finite, so such an approach must fail.

We write S(z) =
∑

i∈S wiz
i = zdB +Q+ zdA where z = z−1 and

A,B,Q are independent of zd.

The drift is the difference B(1)−A(1) between the weight of
positive and negative steps in the asymmetric direction.

Mark C. Wilson Higher Dimensional Lattice Walks 2020-04-22 13 / 24



Our results

General dimension

Melczer-Mishna analysed the case where S is symmetric over all d
axes.

We analyse the case with d− 1 axes of symmetry (with weights
having the same symmetry).

Examples show that with fewer than d− 1 symmetries, the GF is not
D-finite, so such an approach must fail.

We write S(z) =
∑

i∈S wiz
i = zdB +Q+ zdA where z = z−1 and

A,B,Q are independent of zd.

The drift is the difference B(1)−A(1) between the weight of
positive and negative steps in the asymmetric direction.

Mark C. Wilson Higher Dimensional Lattice Walks 2020-04-22 13 / 24



Our results

General dimension

Melczer-Mishna analysed the case where S is symmetric over all d
axes.

We analyse the case with d− 1 axes of symmetry (with weights
having the same symmetry).

Examples show that with fewer than d− 1 symmetries, the GF is not
D-finite, so such an approach must fail.

We write S(z) =
∑

i∈S wiz
i = zdB +Q+ zdA where z = z−1 and

A,B,Q are independent of zd.

The drift is the difference B(1)−A(1) between the weight of
positive and negative steps in the asymmetric direction.

Mark C. Wilson Higher Dimensional Lattice Walks 2020-04-22 13 / 24



Our results

Deriving generating function: kernel method

Introduced by Knuth and developed by Bousquet-Mélou and others
into a powerful tool.

Recursion gives

(1− tS(z))z1 · · · zdF (z, t) = z1 · · · zd +

d∑
k=1

Lk(zk̂, t)

where Lk(zk̂, t) ∈ Q[zk̂][[t]].

There is a symmetry group of S generated by maps zk 7→ 1/zk and

zd 7→ zd
A(zd̂)
B(zd̂)

.

An alternating sum over the group almost fixes the left side and kills
the Lk terms on the right, allowing us to solve for the power series F
by taking the terms with no negative powers.

We use a simple change of variable to convert the positive part of a
Laurent series to the diagonal of a series.
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Our results

Theorem

F (1, t) = ∆

(
G(z, t)

H(z, t)

)
,

where

G(z, t) = (1 + z1) · · · (1 + zd−1) (1− tz1 · · · zd (Q+ 2zdA))

H(z, t) = (1− zd)
(

1− tz1 · · · zdS(z)
)(

1− tz1 · · · zd (Q+ zdA)
)
,

and
S(z) = S(zd̂, zd) = zdB

(
zd̂
)

+Q
(
zd̂
)

+ zdA
(
zd̂
)
.
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Our results

Theorem (Positive Drift Asymptotics)

Let
bk =

∑
i∈S,ik=1

wi =
∑

i∈S,ik=−1
wi.

for 1 ≤ k < d. Then

fn ∼ S(1)n · n
−(d−1)

2 ·

[(
1− A(1)

B(1)

)(
S(1)

π

) d−1
2 1√

b1 · · · bd−1

]
.
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Our results

Theorem (Negative Drift Asymptotics)

Let ρ =
√

A(1)
B(1) , let bk(zk̂) := [zk]S(z) = [z−1k ]S(z) and let

Cρ :=
S(1, ρ) ρ

2πd/2A(1)(1− 1/ρ)2
·

√
S(1, ρ)d

ρ b1(1, ρ) · · · bd−1(1, ρ) ·B(1)
.

If Q 6= 0 then
fn ∼ S(1, ρ)n · n−d/2−1 · Cρ.

If Q = 0 then

fn ∼ n−d/2−1 ·
[
S(1, ρ)n · Cρ + S(1,−ρ)n · C−ρ

]
.
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Our results

Example

Consider the model defined by S = {(1, 0), (−1, 0), (0, 1), (0,−1)}, where
the south step (0,−1) has weight a > 0 and the north step (0, 1) has
weight b > 0 (when a and b are integers we can think of having multiple
copies of each step with different colours). Then

A(x) = a Q(x) = x+ x B(x) = b

and

fn ∼



(
2 + 2

√
ab
)n
· n−2 · 2a1/4(1+

√
ab)

2

πb3/4(
√
a−
√
b)

2 : b < a

(2 + 2a)n · n−1 · 2(1+a)√
a π

: b = a

(2 + a+ b)n · n−1/2 · (a+b)
√
2+a+b

b
√
π

: b > a

with the different cases corresponding to negative drift, zero drift, and
positive drift.
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Our results

S Asymptotics S Asymptotics S Asymptotics

4
π ·

4n

n

√
3

2
√
π
· 3n√

n
An
π ·

(2
√

2)n

n2

2
π ·

4n

n
4

3
√
π
· 4n√

n
Bn
π ·

(2
√

3)n

n2

√
6
π ·

6n

n

√
5

3
√

2π
· 5n√

n
Cn
π ·

(2
√

6)n

n2

8
3π ·

8n

n

√
5

2
√

2π
· 5n√

n

√
8(1+

√
2)7/2

π · (2+2
√

2)n

n2

2
√

2
Γ(1/4)

· 3n

n3/4
2
√

3
3
√
π
· 6n√

n

√
3(1+

√
3)7/2

2π · (2+2
√

3)n

n2

3
√

3√
2Γ(1/4)

· 3n

n3/4

√
7

3
√

3π
· 7n√

n

√
570−114

√
6(24
√

6+59)
19π

· (2+2
√

6)n

n2

√
6
√

3
Γ(1/4)

· 6n

n3/4
3
√

3
2
√
π
· 3n

n3/2
8
π ·

4n

n2

4
√

3
3Γ(1/3)

· 4n

n2/3
3
√

3
2
√
π
· 6n

n3/2

Table: Asymptotics for the 23 D-finite models.

An =

{
24
√
2 : n even

32 : n odd
, Bn =

{
12
√
3 : n even

18 : n odd
, Cn =

{
12
√
30 : n even

144/
√
5 : n odd
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Our results

Extensions

Small modifications yield results for walks constrained to return to an
axis or the origin.

Walks in Weyl chambers can be treated in this way.

The zero-drift case is tricky; we worked out the generic case
(unpublished) but there are many non-generic subcases.

The cases with algebraic GFs that have unusual exponents of n in
asymptotics seem to correspond to rational GFs with degenerate
singularities, which are a nice challenge for the ACSV theory.

Walks with larger steps usually lead to generating functions that are
not D-finite, but in some cases such walks may be tractable (?)

Mark C. Wilson Higher Dimensional Lattice Walks 2020-04-22 20 / 24



Our results

Part of table of results for excursions

S Return to x-axis Return to y-axis Return to origin

8
π ·

4n

n2
8
π ·

4n

n2 δn
32
π ·

4n

n3

δn
4
π ·

4n

n2 δn
4
π ·

4n

n2 δn
8
π ·

4n

n3

3
√
6

2π ·
6n

n2 δn
2
√
6

π ·
6n

n2 δn
3
√
6

π ·
6n

n3

32
9π ·

8n

n2
32
9π ·

8n

n2
128
27π ·

8n

n3

3
√
3

4
√
π

3n

n3/2 δn
4
√
2

π
(2
√
2)n

n2 εn
16
√
2

π
(2
√
2)n

n3

8
3
√
π

4n

n3/2 δn
4
√
3

π
(2
√
3)n

n2 δn
12
√
3

π
(2
√
3)n

n3

5
√
10

16
√
π

5n

n3/2

√
2(1+

√
2)3/2

π
(2+2

√
2)n

n2
2(1+

√
2)3/2

π
(2+2

√
2)n

n3

5
√
10

24
√
π

5n

n3/2 δn
4
√
30

5π
(2
√
6)n

n2 δn
24
√
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25π
(2
√
6)n
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Mark C. Wilson Higher Dimensional Lattice Walks 2020-04-22 21 / 24



Our results

Reference links

Stephen Melczer’s doctoral thesis (good introduction to ACSV, the
basis for a Springer undergraduate text to appear 2020/21.

R. Pemantle & M.C. Wilson, Analytic Combinatorics in Several
Variables, Cambridge University Press 2013 (graduate-level text,
second edition coming 202x).

ACSV project website

Sage implementations by Alex Raichev and others
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Extra slides

Example (2-D case with no symmetry: S = {N,W,SE} )

It turns out that

F (t) = ∆

(
(x2 − y)(1− xy)(x− y2)

(1− x)(1− y)(1− xyt(y + yx+ x))

)
.

We decompose

(x2 − y)(1− xy)(x− y2)
(1− x)(1− y)(1− xyt(y + yx+ x))

=− (1− xy)(x− y2)(x+ 1)

(1− y)(1− xyt(y + yx+ x))

+
(1− xy)(x− y2)

(1− x)(1− xyt(y + yx+ x))
,

Our usual methods now yield

fn =
3n

n3/2

(
3
√

3

2
√
π

+O
(
n−1

))
.
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Extra slides

Publication reform

Pressure is building for complete conversion of the journal system to
open access (e.g. Plan S from European research funders)

Large commercial publishers have incentives not aligned with
scholarship or the interests of readers and authors, and provide overall
low quality service for very high prices.

The journal market is dysfunctional (not properly competitive).

I am associated with several organizations aiming to improve this:
MathOA, Free Journal Network, Publishing Reform Forum. If you
would like to help or learn more, please contact me.
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