ACSV: help wanted from computer algebra(ists)

Mark C. Wilson
University of Auckland

ICMS
Notre Dame
2018-07-27

Standing assumptions

- We use boldface to denote a multi-index: $\mathbf{z}=\left(z_{1}, \ldots, z_{d}\right)$, $\mathbf{r}=\left(r_{1}, \ldots, r_{d}\right)$. Similarly $\mathbf{z}^{\mathbf{r}}=z_{1}^{r_{1}} \ldots z_{d}^{r_{d}}$.

Standing assumptions

- We use boldface to denote a multi-index: $\mathbf{z}=\left(z_{1}, \ldots, z_{d}\right)$, $\mathbf{r}=\left(r_{1}, \ldots, r_{d}\right)$. Similarly $\mathbf{z}^{\mathbf{r}}=z_{1}^{r_{1}} \ldots z_{d}^{r_{d}}$.
- A (multivariate) sequence is a function $a: \mathbb{N}^{d} \rightarrow \mathbb{C}$ for some fixed d. Usually write $a_{\mathbf{r}}$ instead of $a(\mathbf{r})$.

Standing assumptions

- We use boldface to denote a multi-index: $\mathbf{z}=\left(z_{1}, \ldots, z_{d}\right)$, $\mathbf{r}=\left(r_{1}, \ldots, r_{d}\right)$. Similarly $\mathbf{z}^{\mathbf{r}}=z_{1}^{r_{1}} \ldots z_{d}^{r_{d}}$.
- A (multivariate) sequence is a function $a: \mathbb{N}^{d} \rightarrow \mathbb{C}$ for some fixed d. Usually write $a_{\mathbf{r}}$ instead of $a(\mathbf{r})$.
- The generating function (GF) is the formal power series

$$
F(\mathbf{z})=\sum_{\mathbf{r} \in \mathbb{N}^{d}} a_{\mathbf{r}} \mathbf{z}^{\mathbf{r}}
$$

Standing assumptions

- We use boldface to denote a multi-index: $\mathbf{z}=\left(z_{1}, \ldots, z_{d}\right)$, $\mathbf{r}=\left(r_{1}, \ldots, r_{d}\right)$. Similarly $\mathbf{z}^{\mathbf{r}}=z_{1}^{r_{1}} \ldots z_{d}^{r_{d}}$.
- A (multivariate) sequence is a function $a: \mathbb{N}^{d} \rightarrow \mathbb{C}$ for some fixed d. Usually write $a_{\mathbf{r}}$ instead of $a(\mathbf{r})$.
- The generating function (GF) is the formal power series

$$
F(\mathbf{z})=\sum_{\mathbf{r} \in \mathbb{N}^{d}} a_{\mathbf{r}} \mathbf{z}^{\mathbf{r}}
$$

- Assume $F(\mathbf{z})=G(\mathbf{z}) / H(\mathbf{z})$ where G, H are polynomials. The singular variety $\mathcal{V}:=\{\mathbf{z}: H(\mathbf{z})=0\}$ consists of poles.

Standing assumptions

- We use boldface to denote a multi-index: $\mathbf{z}=\left(z_{1}, \ldots, z_{d}\right)$, $\mathbf{r}=\left(r_{1}, \ldots, r_{d}\right)$. Similarly $\mathbf{z}^{\mathbf{r}}=z_{1}^{r_{1}} \ldots z_{d}^{r_{d}}$.
- A (multivariate) sequence is a function $a: \mathbb{N}^{d} \rightarrow \mathbb{C}$ for some fixed d. Usually write $a_{\mathbf{r}}$ instead of $a(\mathbf{r})$.
- The generating function (GF) is the formal power series

$$
F(\mathbf{z})=\sum_{\mathbf{r} \in \mathbb{N}^{d}} a_{\mathbf{r}} \mathbf{z}^{\mathbf{r}}
$$

- Assume $F(\mathbf{z})=G(\mathbf{z}) / H(\mathbf{z})$ where G, H are polynomials. The singular variety $\mathcal{V}:=\{\mathbf{z}: H(\mathbf{z})=0\}$ consists of poles.
- To avoid discussing complicated topology, assume all coefficients of F are nonnegative.

Example (Some examples)

- Binomial coefficients $G=1, H=1-x-y, a_{r s}=\binom{r+s}{s}$

Example (Some examples)

- Binomial coefficients $G=1, H=1-x-y, a_{r s}=\binom{r+s}{s}$
- Delannoy numbers: $G=1, H=1-x-y-x y$

Example (Some examples)

- Binomial coefficients $G=1, H=1-x-y, a_{r s}=\binom{r+s}{s}$
- Delannoy numbers: $G=1, H=1-x-y-x y$
- Lattice walks in quarter plane, negative drift:

$$
\begin{aligned}
& G=(1+x)\left(1-2 t\left(1+x^{2}\right)\right) \\
& H=(1-y)\left(1-t\left(1+x^{2}+x y^{2}\right)\right)\left(1-t\left(1+x^{2}\right)\right)
\end{aligned}
$$

Example (Some examples)

- Binomial coefficients $G=1, H=1-x-y, a_{r s}=\binom{r+s}{s}$
- Delannoy numbers: $G=1, H=1-x-y-x y$
- Lattice walks in quarter plane, negative drift:

$$
\begin{aligned}
& G=(1+x)\left(1-2 t\left(1+x^{2}\right)\right) \\
& H=(1-y)\left(1-t\left(1+x^{2}+x y^{2}\right)\right)\left(1-t\left(1+x^{2}\right)\right)
\end{aligned}
$$

- Lemniscate: $G=1$,

$$
H=19-20 x-20 y+5 x^{2}+14 x y+5 y^{2}-2 x^{2} y-2 x y^{2}+x^{2} y^{2}
$$

Example (Some examples)

- Binomial coefficients $G=1, H=1-x-y, a_{r s}=\binom{r+s}{s}$
- Delannoy numbers: $G=1, H=1-x-y-x y$
- Lattice walks in quarter plane, negative drift:

$$
\begin{aligned}
& G=(1+x)\left(1-2 t\left(1+x^{2}\right)\right) \\
& H=(1-y)\left(1-t\left(1+x^{2}+x y^{2}\right)\right)\left(1-t\left(1+x^{2}\right)\right)
\end{aligned}
$$

- Lemniscate: $G=1$,

$$
H=19-20 x-20 y+5 x^{2}+14 x y+5 y^{2}-2 x^{2} y-2 x y^{2}+x^{2} y^{2}
$$

- Cubical tensors

Outline of ACSV results

- Given a direction $\overline{\mathbf{r}}$, computing asymptotics of $a_{\mathbf{r}}$ in that direction involves restriction to a variety $\operatorname{crit}(\overline{\mathbf{r}})$ of critical points.

Outline of ACSV results

- Given a direction $\overline{\mathbf{r}}$, computing asymptotics of $a_{\mathbf{r}}$ in that direction involves restriction to a variety $\operatorname{crit}(\overline{\mathbf{r}})$ of critical points.
- Only points in a subset contrib $(\overline{\mathbf{r}}) \subseteq \operatorname{crit}(\overline{\mathbf{r}})$ actually contribute to asymptotics.

Outline of ACSV results

- Given a direction $\overline{\mathbf{r}}$, computing asymptotics of $a_{\mathbf{r}}$ in that direction involves restriction to a variety $\operatorname{crit}(\overline{\mathbf{r}})$ of critical points.
- Only points in a subset contrib $(\overline{\mathbf{r}}) \subseteq \operatorname{crit}(\overline{\mathbf{r}})$ actually contribute to asymptotics.
- For $\mathbf{p} \in \operatorname{contrib}(\overline{\mathbf{r}})$, there is a full asymptotic series $\mathcal{A}(\mathbf{p})$ depending on the type of singularity at \mathbf{p}. Each term is computable from finitely many derivatives of G and H at \mathbf{z}.

Outline of ACSV results

- Given a direction $\overline{\mathbf{r}}$, computing asymptotics of $a_{\mathbf{r}}$ in that direction involves restriction to a variety $\operatorname{crit}(\overline{\mathbf{r}})$ of critical points.
- Only points in a subset contrib $(\overline{\mathbf{r}}) \subseteq \operatorname{crit}(\overline{\mathbf{r}})$ actually contribute to asymptotics.
- For $\mathbf{p} \in \operatorname{contrib}(\overline{\mathbf{r}})$, there is a full asymptotic series $\mathcal{A}(\mathbf{p})$ depending on the type of singularity at \mathbf{p}. Each term is computable from finitely many derivatives of G and H at \mathbf{z}.
- This yields an asymptotic expansion

$$
a_{\mathbf{r}} \sim \sum_{\mathbf{p} \in \operatorname{contrib}(\overline{\mathbf{r}})} \mathbf{p}^{-\mathbf{r}} \mathcal{A}(\mathbf{p})
$$

that is uniform on compact subsets of directions, provided the geometry at \mathbf{p} does not change.

Outline of ACSV results, continued

- $\operatorname{crit}(\overline{\mathbf{r}})$ is the set of solutions to a polynomial system, and generically finite.

Outline of ACSV results, continued

- $\operatorname{crit}(\overline{\mathbf{r}})$ is the set of solutions to a polynomial system, and generically finite.
- There is an element of $\operatorname{contrib}(\overline{\mathbf{r}})$ having all positive coordinates.

Outline of ACSV results, continued

- $\operatorname{crit}(\overline{\mathbf{r}})$ is the set of solutions to a polynomial system, and generically finite.
- There is an element of $\operatorname{contrib}(\overline{\mathbf{r}})$ having all positive coordinates.
- We have full results for smooth and transverse multiple local geometry of critical points.

Outline of ACSV results, continued

- $\operatorname{crit}(\overline{\mathbf{r}})$ is the set of solutions to a polynomial system, and generically finite.
- There is an element of $\operatorname{contrib}(\overline{\mathbf{r}})$ having all positive coordinates.
- We have full results for smooth and transverse multiple local geometry of critical points.
- We can check $\mathbf{p} \in \operatorname{contrib}(\overline{\mathbf{r}})$ by checking whether $\overline{\mathbf{r}}$ belongs to a certain real positive cone $K(\mathbf{p})$.

Simplest asymptotic formulae

- Smooth point:

$$
a_{\mathbf{r}} \sim \mathbf{z}_{*}(\overline{\mathbf{r}})^{-\mathbf{r}} \sqrt{\frac{1}{(2 \pi|\mathbf{r}|)^{d-1} \kappa\left(\mathbf{z}_{*}(\overline{\mathbf{r}})\right)}} \frac{G\left(\mathbf{z}_{*}(\overline{\mathbf{r}})\right)}{\left|\nabla_{\log } H\left(\mathbf{z}_{*}(\overline{\mathbf{r}})\right)\right|}
$$

where $|\mathbf{r}|=\sum_{i} r_{i}$ and κ is the Gaussian curvature of $\log \mathcal{V}$ at $\log \mathbf{z}_{*}(\overline{\mathbf{r}})$.

Simplest asymptotic formulae

- Smooth point:

$$
a_{\mathbf{r}} \sim \mathbf{z}_{*}(\overline{\mathbf{r}})^{-\mathbf{r}} \sqrt{\frac{1}{(2 \pi|\mathbf{r}|)^{d-1} \kappa\left(\mathbf{z}_{*}(\overline{\mathbf{r}})\right)}} \frac{G\left(\mathbf{z}_{*}(\overline{\mathbf{r}})\right)}{\left|\nabla_{\log } H\left(\mathbf{z}_{*}(\overline{\mathbf{r}})\right)\right|}
$$

where $|\mathbf{r}|=\sum_{i} r_{i}$ and κ is the Gaussian curvature of $\log \mathcal{V}$ at $\log \mathbf{Z}_{*}(\overline{\mathbf{r}})$.

- The Gaussian curvature can be computed explicitly in terms of derivatives of H to second order.

Simplest asymptotic formulae

- Smooth point:

$$
a_{\mathbf{r}} \sim \mathbf{z}_{*}(\overline{\mathbf{r}})^{-\mathbf{r}} \sqrt{\frac{1}{(2 \pi|\mathbf{r}|)^{d-1} \kappa\left(\mathbf{z}_{*}(\overline{\mathbf{r}})\right)}} \frac{G\left(\mathbf{z}_{*}(\overline{\mathbf{r}})\right)}{\left|\nabla_{\log } H\left(\mathbf{z}_{*}(\overline{\mathbf{r}})\right)\right|}
$$

where $|\mathbf{r}|=\sum_{i} r_{i}$ and κ is the Gaussian curvature of $\log \mathcal{V}$ at $\log \mathbf{z}_{*}(\overline{\mathbf{r}})$.

- The Gaussian curvature can be computed explicitly in terms of derivatives of H to second order.
- Simplest multiple point:

$$
a_{\mathbf{r}} \sim \mathbf{z}_{*}(\overline{\mathbf{r}})^{-\mathbf{r}} G\left(\mathbf{z}_{*}(\overline{\mathbf{r}})\right) \operatorname{det} J\left(\mathbf{z}_{*}(\overline{\mathbf{r}})\right)^{-1}
$$

where J is the Jacobian matrix $\left(\partial H_{i} / \partial z_{j}\right)$ and $H=\prod_{i} H_{i}$.

Why we need computer algebra

1. Conversion of G / H to various forms.

Why we need computer algebra

1. Conversion of G / H to various forms.
2. Computing $\operatorname{crit}(\overline{\mathbf{r}})$.

Why we need computer algebra

1. Conversion of G / H to various forms.
2. Computing $\operatorname{crit}(\overline{\mathbf{r}})$.
3. Classification of local geometry at critical points.

Why we need computer algebra

1. Conversion of G / H to various forms.
2. Computing $\operatorname{crit}(\overline{\mathbf{r}})$.
3. Classification of local geometry at critical points.
4. Determining which critical points contribute.

Why we need computer algebra

1. Conversion of G / H to various forms.
2. Computing $\operatorname{crit}(\overline{\mathbf{r}})$.
3. Classification of local geometry at critical points.
4. Determining which critical points contribute.
5. Explicit formulae for higher order asymptotics.

Implementation

- Our basic results for smooth and multiple points are implemented in open source software mostly written by Alex Raichev.

Implementation

- Our basic results for smooth and multiple points are implemented in open source software mostly written by Alex Raichev.
- This was a standalone package but thanks to Daniel Krenn it is now part of the core Sage distribution:
multivariate_generating_functions inside sage.rings.asymptotic.asymptotics.

Implementation

- Our basic results for smooth and multiple points are implemented in open source software mostly written by Alex Raichev.
- This was a standalone package but thanks to Daniel Krenn it is now part of the core Sage distribution:
multivariate_generating_functions inside sage.rings.asymptotic.asymptotics.
- It has a few thousand lines of code. I am slowly making some improvements.

Implementation

- Our basic results for smooth and multiple points are implemented in open source software mostly written by Alex Raichev.
- This was a standalone package but thanks to Daniel Krenn it is now part of the core Sage distribution:
multivariate_generating_functions inside sage.rings.asymptotic.asymptotics.
- It has a few thousand lines of code. I am slowly making some improvements.
- Main features:

Implementation

- Our basic results for smooth and multiple points are implemented in open source software mostly written by Alex Raichev.
- This was a standalone package but thanks to Daniel Krenn it is now part of the core Sage distribution:
multivariate_generating_functions inside sage.rings.asymptotic.asymptotics.
- It has a few thousand lines of code. I am slowly making some improvements.
- Main features:
- Find and classify smooth and multiple points.

Implementation

- Our basic results for smooth and multiple points are implemented in open source software mostly written by Alex Raichev.
- This was a standalone package but thanks to Daniel Krenn it is now part of the core Sage distribution:
multivariate_generating_functions inside sage.rings.asymptotic.asymptotics.
- It has a few thousand lines of code. I am slowly making some improvements.
- Main features:
- Find and classify smooth and multiple points.
- Asymptotic contribution to arbitrary order at a smooth or multiple point, symbolic or numeric.

Implementation

- Our basic results for smooth and multiple points are implemented in open source software mostly written by Alex Raichev.
- This was a standalone package but thanks to Daniel Krenn it is now part of the core Sage distribution:
multivariate_generating_functions inside sage.rings.asymptotic.asymptotics.
- It has a few thousand lines of code. I am slowly making some improvements.
- Main features:
- Find and classify smooth and multiple points.
- Asymptotic contribution to arbitrary order at a smooth or multiple point, symbolic or numeric.
- Auxiliary functions to convert G / H to various forms.

Status of package

1. Conversion of G / H to various forms.

Status of package

1. Conversion of G / H to various forms.
2. Computing $\operatorname{crit}(\overline{\mathrm{r}})$.

Status of package

1. Conversion of G / H to various forms.
2. Computing $\operatorname{crit}(\overline{\mathrm{r}})$.
3. Classification of local geometry of critical points.

Status of package

1. Conversion of G / H to various forms.
2. Computing crit($\overline{\mathrm{r}})$.
3. Classification of local geometry of critical points.
4. Determining which critical points contribute.

Status of package

1. Conversion of G / H to various forms.
2. Computing crit($\overline{\mathrm{r}})$.
3. Classification of local geometry of critical points.
4. Determining which critical points contribute.
5. Explicit formulae for higher order asymptotics.

Relatively easy improvements

- Classifying critical points by geometry.

Relatively easy improvements

- Classifying critical points by geometry.
- Expression swell with algebraic numbers causes slowdown change code to reduce modulo minimal polynomial.

Relatively easy improvements

- Classifying critical points by geometry.
- Expression swell with algebraic numbers causes slowdown change code to reduce modulo minimal polynomial.
- Exception handling.

Relatively easy improvements

- Classifying critical points by geometry.
- Expression swell with algebraic numbers causes slowdown change code to reduce modulo minimal polynomial.
- Exception handling.
- Putting everything together (non-interactive mode).

Medium level improvements

- Finding all the contributing singularities.

Medium level improvements

- Finding all the contributing singularities.
- Given a direction lying in a nontrivial cone, find which point controls this cone.

Medium level improvements

- Finding all the contributing singularities.
- Given a direction lying in a nontrivial cone, find which point controls this cone.
- Determine whether a direction lies inside a cone not given by rational extreme rays (Cone package can't handle).

Medium level improvements

- Finding all the contributing singularities.
- Given a direction lying in a nontrivial cone, find which point controls this cone.
- Determine whether a direction lies inside a cone not given by rational extreme rays (Cone package can't handle).
- Improvements to speed of higher order asymptotic computations.

Hörmander's explicit formula for integral asymptotics

 For an isolated nondegenerate stationary point $\mathbf{0}$ in dimension d,$$
I(\lambda) \sim\left(\operatorname{det}\left(\frac{\lambda f^{\prime \prime}(\mathbf{0})}{2 \pi}\right)\right)^{-1 / 2} \sum_{k \geq 0} \lambda^{-k} L_{k}(A, f)
$$

where L_{k} is a differential operator of order $2 k$ evaluated at $\mathbf{0}$:

$$
\begin{aligned}
\underline{f}(t) & =f(t)-(1 / 2) t f^{\prime \prime}(\mathbf{0}) t^{T} \\
\mathcal{D} & =\sum_{a, b}\left(f^{\prime \prime}(\mathbf{0})^{-1}\right)_{a, b}\left(-\mathrm{i} \partial_{a}\right)\left(-\mathrm{i} \partial_{b}\right) \\
L_{k}(A, f) & =\sum_{l \leq 2 k} \frac{\mathcal{D}^{l+k}\left(A \underline{f}^{l}\right)(\mathbf{0})}{(-1)^{k} 2^{l+k} l!(l+k)!} .
\end{aligned}
$$

For example $L_{0}(A, f)=A$,
$L_{1}(A, f)=-\mathcal{D}(A) / 2-\mathcal{D}^{2}(A \underline{f}) / 8-\mathcal{D}^{3}\left(A \underline{f}^{2}\right) / 48$.

Bigger challenges

- Everything works only in the simple case, where H has a polynomial factorization that coincides with the local analytic factorization at \mathbf{z}_{*}.

Bigger challenges

- Everything works only in the simple case, where H has a polynomial factorization that coincides with the local analytic factorization at \mathbf{z}_{*}.
- Detecting whether we are in this case is easy (irreducible factors are everywhere smooth).

Bigger challenges

- Everything works only in the simple case, where H has a polynomial factorization that coincides with the local analytic factorization at \mathbf{z}_{*}.
- Detecting whether we are in this case is easy (irreducible factors are everywhere smooth).
- However if we are not in this case, we currently have no way to proceed. Such problems do arise rather frequently in applications.

Some conceptual difficulties

- Our methods are analytic, so computations should be carried out in the analytic local ring (the ring of germs of holomorphic functions at a point).

Some conceptual difficulties

- Our methods are analytic, so computations should be carried out in the analytic local ring (the ring of germs of holomorphic functions at a point).
- Computation in this ring is trickier than in polynomial rings. However there is a theory of computation in local rings and apparently SINGULAR implements some of it.

Some conceptual difficulties

- Our methods are analytic, so computations should be carried out in the analytic local ring (the ring of germs of holomorphic functions at a point).
- Computation in this ring is trickier than in polynomial rings. However there is a theory of computation in local rings and apparently SINGULAR implements some of it.
- Help wanted in finding the state of the art!

Example (local factorization of lemniscate)

- Given $F=1 / H$ where H is irreducible, given by $H(x, y)=$ $19-20 x-20 y+5 x^{2}+14 x y+5 y^{2}-2 x^{2} y-2 x y^{2}+x^{2} y^{2}$.

Example (local factorization of lemniscate)

- Given $F=1 / H$ where H is irreducible, given by $H(x, y)=$ $19-20 x-20 y+5 x^{2}+14 x y+5 y^{2}-2 x^{2} y-2 x y^{2}+x^{2} y^{2}$.
- Here \mathcal{V} is smooth at every point except $(1,1)$, which we see by solving the system $\{H=0, \nabla H=0\}$.

Example (local factorization of lemniscate)

- Given $F=1 / H$ where H is irreducible, given by $H(x, y)=$ $19-20 x-20 y+5 x^{2}+14 x y+5 y^{2}-2 x^{2} y-2 x y^{2}+x^{2} y^{2}$.
- Here \mathcal{V} is smooth at every point except $(1,1)$, which we see by solving the system $\{H=0, \nabla H=0\}$.
- At $(1,1)$, changing variables to $h(u, v):=H(1+u, 1+v)$, we see that $h(u, v)=4 u^{2}+10 u v+4 v^{2}+C(u, v)$ where C has no terms of degree less than 3 .

Example (local factorization of lemniscate)

- Given $F=1 / H$ where H is irreducible, given by $H(x, y)=$ $19-20 x-20 y+5 x^{2}+14 x y+5 y^{2}-2 x^{2} y-2 x y^{2}+x^{2} y^{2}$.
- Here \mathcal{V} is smooth at every point except $(1,1)$, which we see by solving the system $\{H=0, \nabla H=0\}$.
- At $(1,1)$, changing variables to $h(u, v):=H(1+u, 1+v)$, we see that $h(u, v)=4 u^{2}+10 u v+4 v^{2}+C(u, v)$ where C has no terms of degree less than 3 .
- The quadratic part factors into distinct factors, showing that $(1,1)$ is a transverse multiple point.

Example (local factorization of lemniscate)

- Given $F=1 / H$ where H is irreducible, given by $H(x, y)=$ $19-20 x-20 y+5 x^{2}+14 x y+5 y^{2}-2 x^{2} y-2 x y^{2}+x^{2} y^{2}$.
- Here \mathcal{V} is smooth at every point except $(1,1)$, which we see by solving the system $\{H=0, \nabla H=0\}$.
- At $(1,1)$, changing variables to $h(u, v):=H(1+u, 1+v)$, we see that $h(u, v)=4 u^{2}+10 u v+4 v^{2}+C(u, v)$ where C has no terms of degree less than 3 .
- The quadratic part factors into distinct factors, showing that $(1,1)$ is a transverse multiple point.
- The current implementation does not deal with this at all, but we can compute by hand in this case to see that $a_{r r} \sim 1 / 6$.

Example (effect of numerator, I)

- Given $F=G / H$ where $G=1, H_{1}=3-2 x-y$, $H_{2}=3-x-2 y, H=H_{1} H_{2}$.

Example (effect of numerator, I)

- Given $F=G / H$ where $G=1, H_{1}=3-2 x-y$, $H_{2}=3-x-2 y, H=H_{1} H_{2}$.
- Here \mathcal{V} is smooth at every point except $(1,1)$. We are in the simple case.

Example (effect of numerator, I)

- Given $F=G / H$ where $G=1, H_{1}=3-2 x-y$, $H_{2}=3-x-2 y, H=H_{1} H_{2}$.
- Here \mathcal{V} is smooth at every point except $(1,1)$. We are in the simple case.
- We obtain $a_{r r} \sim 3$ by multiple point formula below.

Example (effect of numerator, I)

- Given $F=G / H$ where $G=1, H_{1}=3-2 x-y$, $H_{2}=3-x-2 y, H=H_{1} H_{2}$.
- Here \mathcal{V} is smooth at every point except $(1,1)$. We are in the simple case.
- We obtain $a_{r r} \sim 3$ by multiple point formula below.
- If we change to $G=x-y$, our implementation gives $a_{r r} \sim 0$, which is correct, but only by luck.

Example (effect of numerator, I)

- Given $F=G / H$ where $G=1, H_{1}=3-2 x-y$, $H_{2}=3-x-2 y, H=H_{1} H_{2}$.
- Here \mathcal{V} is smooth at every point except $(1,1)$. We are in the simple case.
- We obtain $a_{r r} \sim 3$ by multiple point formula below.
- If we change to $G=x-y$, our implementation gives $a_{r r} \sim 0$, which is correct, but only by luck.
- Here G is in the ideal $\left\langle H_{1}, H_{2}\right\rangle, G=H_{2}-H_{1}$ so

$$
\frac{G}{H}=\frac{1}{3-2 x-y}-\frac{1}{3-x-2 y}
$$

Example (effect of numerator, I)

- Given $F=G / H$ where $G=1, H_{1}=3-2 x-y$, $H_{2}=3-x-2 y, H=H_{1} H_{2}$.
- Here \mathcal{V} is smooth at every point except $(1,1)$. We are in the simple case.
- We obtain $a_{r r} \sim 3$ by multiple point formula below.
- If we change to $G=x-y$, our implementation gives $a_{r r} \sim 0$, which is correct, but only by luck.
- Here G is in the ideal $\left\langle H_{1}, H_{2}\right\rangle, G=H_{2}-H_{1}$ so

$$
\frac{G}{H}=\frac{1}{3-2 x-y}-\frac{1}{3-x-2 y}
$$

- Thus it is not always even obvious whether a point is smooth, and vanishing numerator affects exponential rate.

Example (effect of numerator, II)

- Here $F=G / H$ where $G=x-y, H_{1}=1-(1 / 6) x-(5 / 6) y^{2}$, $H_{2}=1-(5 / 6) x^{2}-(1 / 6) y^{2}, H=H_{1} H_{2}$.

Example (effect of numerator, II)

- Here $F=G / H$ where $G=x-y, H_{1}=1-(1 / 6) x-(5 / 6) y^{2}$, $H_{2}=1-(5 / 6) x^{2}-(1 / 6) y^{2}, H=H_{1} H_{2}$.
- Again \mathcal{V} is clearly smooth at every point except $(1,1)$.

Example (effect of numerator, II)

- Here $F=G / H$ where $G=x-y, H_{1}=1-(1 / 6) x-(5 / 6) y^{2}$, $H_{2}=1-(5 / 6) x^{2}-(1 / 6) y^{2}, H=H_{1} H_{2}$.
- Again \mathcal{V} is clearly smooth at every point except $(1,1)$.
- Our current implementation gives $a_{r r} \sim 0$, but this is wrong.

Example (effect of numerator, II)

- Here $F=G / H$ where $G=x-y, H_{1}=1-(1 / 6) x-(5 / 6) y^{2}$, $H_{2}=1-(5 / 6) x^{2}-(1 / 6) y^{2}, H=H_{1} H_{2}$.
- Again \mathcal{V} is clearly smooth at every point except $(1,1)$.
- Our current implementation gives $a_{r r} \sim 0$, but this is wrong.
- Here G is not in the ideal $\left\langle H_{1}, H_{2}\right\rangle$ of the polynomial ring.

Example (effect of numerator, II)

- Here $F=G / H$ where $G=x-y, H_{1}=1-(1 / 6) x-(5 / 6) y^{2}$, $H_{2}=1-(5 / 6) x^{2}-(1 / 6) y^{2}, H=H_{1} H_{2}$.
- Again \mathcal{V} is clearly smooth at every point except $(1,1)$.
- Our current implementation gives $a_{r r} \sim 0$, but this is wrong.
- Here G is not in the ideal $\left\langle H_{1}, H_{2}\right\rangle$ of the polynomial ring.
- We need to go to the local analytic ring. Ring theoretic arguments (Nullstellensatz, Noetherianity) show that G must lie in the ideal generated by H_{1}, H_{2} and a simplification again occurs. Again we will have smooth point behaviour.

Example (effect of numerator, II)

- Here $F=G / H$ where $G=x-y, H_{1}=1-(1 / 6) x-(5 / 6) y^{2}$, $H_{2}=1-(5 / 6) x^{2}-(1 / 6) y^{2}, H=H_{1} H_{2}$.
- Again \mathcal{V} is clearly smooth at every point except $(1,1)$.
- Our current implementation gives $a_{r r} \sim 0$, but this is wrong.
- Here G is not in the ideal $\left\langle H_{1}, H_{2}\right\rangle$ of the polynomial ring.
- We need to go to the local analytic ring. Ring theoretic arguments (Nullstellensatz, Noetherianity) show that G must lie in the ideal generated by H_{1}, H_{2} and a simplification again occurs. Again we will have smooth point behaviour.
- How to do this algorithmically?

