ACSV: help wanted from computer algebra(ists)

Mark C. Wilson University of Auckland

> ICMS Notre Dame 2018-07-27

> > ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

▶ We use boldface to denote a multi-index: $\mathbf{z} = (z_1, \ldots, z_d)$, $\mathbf{r} = (r_1, \ldots, r_d)$. Similarly $\mathbf{z}^{\mathbf{r}} = z_1^{r_1} \ldots z_d^{r_d}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ▶ We use boldface to denote a multi-index: $\mathbf{z} = (z_1, \ldots, z_d)$, $\mathbf{r} = (r_1, \ldots, r_d)$. Similarly $\mathbf{z}^{\mathbf{r}} = z_1^{r_1} \ldots z_d^{r_d}$.
- A (multivariate) sequence is a function a : N^d → C for some fixed d. Usually write a_r instead of a(r).

- We use boldface to denote a multi-index: $\mathbf{z} = (z_1, \dots, z_d)$, $\mathbf{r} = (r_1, \dots, r_d)$. Similarly $\mathbf{z}^{\mathbf{r}} = z_1^{r_1} \dots z_d^{r_d}$.
- A (multivariate) sequence is a function a : N^d → C for some fixed d. Usually write a_r instead of a(r).
- ► The generating function (GF) is the formal power series

$$F(\mathbf{z}) = \sum_{\mathbf{r} \in \mathbb{N}^d} a_{\mathbf{r}} \mathbf{z}^{\mathbf{r}}.$$

- ▶ We use boldface to denote a multi-index: $\mathbf{z} = (z_1, \dots, z_d)$, $\mathbf{r} = (r_1, \dots, r_d)$. Similarly $\mathbf{z}^{\mathbf{r}} = z_1^{r_1} \dots z_d^{r_d}$.
- A (multivariate) sequence is a function a : N^d → C for some fixed d. Usually write a_r instead of a(r).
- The generating function (GF) is the formal power series

$$F(\mathbf{z}) = \sum_{\mathbf{r} \in \mathbb{N}^d} a_{\mathbf{r}} \mathbf{z}^{\mathbf{r}}.$$

► Assume F(z) = G(z)/H(z) where G, H are polynomials. The singular variety V := {z : H(z) = 0} consists of poles.

- ▶ We use boldface to denote a multi-index: $\mathbf{z} = (z_1, \dots, z_d)$, $\mathbf{r} = (r_1, \dots, r_d)$. Similarly $\mathbf{z}^{\mathbf{r}} = z_1^{r_1} \dots z_d^{r_d}$.
- A (multivariate) sequence is a function a : N^d → C for some fixed d. Usually write a_r instead of a(r).
- The generating function (GF) is the formal power series

$$F(\mathbf{z}) = \sum_{\mathbf{r} \in \mathbb{N}^d} a_{\mathbf{r}} \mathbf{z}^{\mathbf{r}}.$$

- ► Assume F(z) = G(z)/H(z) where G, H are polynomials. The singular variety V := {z : H(z) = 0} consists of poles.
- To avoid discussing complicated topology, assume all coefficients of F are nonnegative.

▶ Binomial coefficients $G = 1, H = 1 - x - y, a_{rs} = {r+s \choose s}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▶ Binomial coefficients $G = 1, H = 1 - x - y, a_{rs} = {r+s \choose s}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

▶ Delannoy numbers: G = 1, H = 1 - x - y - xy

- ▶ Binomial coefficients $G = 1, H = 1 x y, a_{rs} = {r+s \choose s}$
- ► Delannoy numbers: G = 1, H = 1 x y xy
- Lattice walks in quarter plane, negative drift:

$$G = (1+x)(1-2t(1+x^2))$$

$$H = (1-y)(1-t(1+x^2+xy^2))(1-t(1+x^2)).$$

- ▶ Binomial coefficients $G = 1, H = 1 x y, a_{rs} = {r+s \choose s}$
- ► Delannoy numbers: G = 1, H = 1 x y xy
- Lattice walks in quarter plane, negative drift:

$$G = (1+x)(1-2t(1+x^2))$$

$$H = (1-y)(1-t(1+x^2+xy^2))(1-t(1+x^2)).$$

▶ Lemniscate: G = 1,

 $H = 19 - 20x - 20y + 5x^{2} + 14xy + 5y^{2} - 2x^{2}y - 2xy^{2} + x^{2}y^{2}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

- ▶ Binomial coefficients $G = 1, H = 1 x y, a_{rs} = {r+s \choose s}$
- ► Delannoy numbers: G = 1, H = 1 x y xy
- Lattice walks in quarter plane, negative drift:

$$G = (1+x)(1-2t(1+x^2))$$

$$H = (1-y)(1-t(1+x^2+xy^2))(1-t(1+x^2)).$$

▶ Lemniscate: G = 1,

 $H = 19 - 20x - 20y + 5x^{2} + 14xy + 5y^{2} - 2x^{2}y - 2xy^{2} + x^{2}y^{2}.$

Cubical tensors

► Given a direction r

, computing asymptotics of ar
in that direction involves restriction to a variety crit(r

) of critical points.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

► Given a direction r

, computing asymptotics of ar
in that direction involves restriction to a variety crit(r

) of critical points.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▶ Only points in a subset $contrib(\overline{r}) \subseteq crit(\overline{r})$ actually contribute to asymptotics.

- ► Given a direction r

 , computing asymptotics of ar
 in that direction involves restriction to a variety crit(r

) of critical points.
- Only points in a subset contrib(r
) ⊆ crit(r
) actually contribute to asymptotics.
- For p ∈ contrib(r), there is a full asymptotic series A(p) depending on the type of singularity at p. Each term is computable from finitely many derivatives of G and H at z.

- ► Given a direction r

 , computing asymptotics of ar
 in that direction involves restriction to a variety crit(r

) of critical points.
- Only points in a subset contrib(r
) ⊆ crit(r
) actually contribute to asymptotics.
- For p ∈ contrib(r), there is a full asymptotic series A(p) depending on the type of singularity at p. Each term is computable from finitely many derivatives of G and H at z.
- This yields an asymptotic expansion

$$a_{\mathbf{r}} \sim \sum_{\mathbf{p} \in \operatorname{contrib}(\overline{\mathbf{r}})} \mathbf{p}^{-\mathbf{r}} \mathcal{A}(\mathbf{p})$$

that is uniform on compact subsets of directions, provided the geometry at \mathbf{p} does not change.

 crit(r̄) is the set of solutions to a polynomial system, and generically finite.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 crit(r̄) is the set of solutions to a polynomial system, and generically finite.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► There is an element of contrib(r) having all positive coordinates.

- crit(r̄) is the set of solutions to a polynomial system, and generically finite.
- ► There is an element of contrib(r) having all positive coordinates.
- We have full results for smooth and transverse multiple local geometry of critical points.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- crit(r̄) is the set of solutions to a polynomial system, and generically finite.
- ► There is an element of contrib(r) having all positive coordinates.
- We have full results for smooth and transverse multiple local geometry of critical points.
- We can check p ∈ contrib(r̄) by checking whether r̄ belongs to a certain real positive cone K(p).

Simplest asymptotic formulae

Smooth point:

$$a_{\mathbf{r}} \sim \mathbf{z}_{*}(\overline{\mathbf{r}})^{-\mathbf{r}} \sqrt{\frac{1}{(2\pi|\mathbf{r}|)^{d-1}\kappa(\mathbf{z}_{*}(\overline{\mathbf{r}}))}} \frac{G(\mathbf{z}_{*}(\overline{\mathbf{r}}))}{|\nabla_{\log}H(\mathbf{z}_{*}(\overline{\mathbf{r}}))|}$$

where $|\mathbf{r}| = \sum_i r_i$ and κ is the Gaussian curvature of $\log \mathcal{V}$ at $\log \mathbf{z}_*(\overline{\mathbf{r}})$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Simplest asymptotic formulae

Smooth point:

$$a_{\mathbf{r}} \sim \mathbf{z}_{*}(\overline{\mathbf{r}})^{-\mathbf{r}} \sqrt{\frac{1}{(2\pi|\mathbf{r}|)^{d-1} \kappa(\mathbf{z}_{*}(\overline{\mathbf{r}}))}} \frac{G(\mathbf{z}_{*}(\overline{\mathbf{r}}))}{|\nabla_{\log} H(\mathbf{z}_{*}(\overline{\mathbf{r}}))|}$$

where $|\mathbf{r}| = \sum_i r_i$ and κ is the Gaussian curvature of $\log \mathcal{V}$ at $\log \mathbf{z}_*(\overline{\mathbf{r}})$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► The Gaussian curvature can be computed explicitly in terms of derivatives of *H* to second order.

Simplest asymptotic formulae

Smooth point:

$$a_{\mathbf{r}} \sim \mathbf{z}_{*}(\overline{\mathbf{r}})^{-\mathbf{r}} \sqrt{\frac{1}{(2\pi|\mathbf{r}|)^{d-1}\kappa(\mathbf{z}_{*}(\overline{\mathbf{r}}))}} \frac{G(\mathbf{z}_{*}(\overline{\mathbf{r}}))}{|\nabla_{\log}H(\mathbf{z}_{*}(\overline{\mathbf{r}}))|}$$

where $|\mathbf{r}| = \sum_i r_i$ and κ is the Gaussian curvature of $\log \mathcal{V}$ at $\log \mathbf{z}_*(\overline{\mathbf{r}})$.

- ► The Gaussian curvature can be computed explicitly in terms of derivatives of *H* to second order.
- Simplest multiple point:

$$a_{\mathbf{r}} \sim \mathbf{z}_{*}(\overline{\mathbf{r}})^{-\mathbf{r}} G(\mathbf{z}_{*}(\overline{\mathbf{r}})) \det J(\mathbf{z}_{*}(\overline{\mathbf{r}}))^{-1}$$

where J is the Jacobian matrix $(\partial H_i/\partial z_j)$ and $H = \prod_i H_i$.

1. Conversion of G/H to various forms.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

1. Conversion of G/H to various forms.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

2. Computing $\operatorname{crit}(\overline{\mathbf{r}})$.

- 1. Conversion of G/H to various forms.
- 2. Computing $\operatorname{crit}(\overline{\mathbf{r}})$.
- 3. Classification of local geometry at critical points.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. Conversion of G/H to various forms.
- 2. Computing $\operatorname{crit}(\overline{\mathbf{r}})$.
- 3. Classification of local geometry at critical points.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

4. Determining which critical points contribute.

- 1. Conversion of G/H to various forms.
- 2. Computing $\operatorname{crit}(\overline{\mathbf{r}})$.
- 3. Classification of local geometry at critical points.
- 4. Determining which critical points contribute.
- 5. Explicit formulae for higher order asymptotics.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 Our basic results for smooth and multiple points are implemented in open source software mostly written by Alex Raichev.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Our basic results for smooth and multiple points are implemented in open source software mostly written by Alex Raichev.
- This was a standalone package but thanks to Daniel Krenn it is now part of the core Sage distribution: multivariate_generating_functions inside sage.rings.asymptotic.asymptotics.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Our basic results for smooth and multiple points are implemented in open source software mostly written by Alex Raichev.
- This was a standalone package but thanks to Daniel Krenn it is now part of the core Sage distribution: multivariate_generating_functions inside sage.rings.asymptotic.asymptotics.
- It has a few thousand lines of code. I am slowly making some improvements.

- Our basic results for smooth and multiple points are implemented in open source software mostly written by Alex Raichev.
- This was a standalone package but thanks to Daniel Krenn it is now part of the core Sage distribution: multivariate_generating_functions inside sage.rings.asymptotic.asymptotics.
- It has a few thousand lines of code. I am slowly making some improvements.

Main features:

- Our basic results for smooth and multiple points are implemented in open source software mostly written by Alex Raichev.
- This was a standalone package but thanks to Daniel Krenn it is now part of the core Sage distribution: multivariate_generating_functions inside sage.rings.asymptotic.asymptotics.
- It has a few thousand lines of code. I am slowly making some improvements.

- Main features:
 - Find and classify smooth and multiple points.

- Our basic results for smooth and multiple points are implemented in open source software mostly written by Alex Raichev.
- This was a standalone package but thanks to Daniel Krenn it is now part of the core Sage distribution: multivariate_generating_functions inside sage.rings.asymptotic.asymptotics.
- It has a few thousand lines of code. I am slowly making some improvements.
- Main features:
 - Find and classify smooth and multiple points.
 - Asymptotic contribution to arbitrary order at a smooth or multiple point, symbolic or numeric.

- Our basic results for smooth and multiple points are implemented in open source software mostly written by Alex Raichev.
- This was a standalone package but thanks to Daniel Krenn it is now part of the core Sage distribution: multivariate_generating_functions inside sage.rings.asymptotic.asymptotics.
- It has a few thousand lines of code. I am slowly making some improvements.
- Main features:
 - Find and classify smooth and multiple points.
 - Asymptotic contribution to arbitrary order at a smooth or multiple point, symbolic or numeric.

• Auxiliary functions to convert G/H to various forms.

Status of package

1. Conversion of G/H to various forms.

(ロ)、(型)、(E)、(E)、 E) の(の)

Status of package

1. Conversion of G/H to various forms.

2. Computing $\operatorname{crit}(\overline{\mathbf{r}})$.

Status of package

- 1. Conversion of G/H to various forms.
- 2. Computing $\operatorname{crit}(\overline{\mathbf{r}})$.
- 3. Classification of local geometry of critical points.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Status of package

- 1. Conversion of G/H to various forms.
- 2. Computing $\operatorname{crit}(\overline{\mathbf{r}})$.
- 3. Classification of local geometry of critical points.

4. Determining which critical points contribute.

Status of package

- 1. Conversion of G/H to various forms.
- 2. Computing $\operatorname{crit}(\overline{\mathbf{r}})$.
- 3. Classification of local geometry of critical points.
- 4. Determining which critical points contribute.
- 5. Explicit formulae for higher order asymptotics.

Classifying critical points by geometry.

- Classifying critical points by geometry.
- Expression swell with algebraic numbers causes slowdown change code to reduce modulo minimal polynomial.

- Classifying critical points by geometry.
- Expression swell with algebraic numbers causes slowdown change code to reduce modulo minimal polynomial.

Exception handling.

- Classifying critical points by geometry.
- Expression swell with algebraic numbers causes slowdown change code to reduce modulo minimal polynomial.

- Exception handling.
- Putting everything together (non-interactive mode).

Finding all the contributing singularities.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Finding all the contributing singularities.
- Given a direction lying in a nontrivial cone, find which point controls this cone.

- Finding all the contributing singularities.
- Given a direction lying in a nontrivial cone, find which point controls this cone.
- Determine whether a direction lies inside a cone not given by rational extreme rays (Cone package can't handle).

- Finding all the contributing singularities.
- Given a direction lying in a nontrivial cone, find which point controls this cone.
- Determine whether a direction lies inside a cone not given by rational extreme rays (Cone package can't handle).

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Improvements to speed of higher order asymptotic computations.

Hörmander's explicit formula for integral asymptotics For an isolated nondegenerate stationary point **0** in dimension *d*,

$$I(\lambda) \sim \left(\det\left(\frac{\lambda f''(\mathbf{0})}{2\pi}\right) \right)^{-1/2} \sum_{k \ge 0} \lambda^{-k} L_k(A, f)$$

where L_k is a differential operator of order 2k evaluated at **0**:

$$\underline{f}(t) = f(t) - (1/2)tf''(\mathbf{0})t^T$$
$$\mathcal{D} = \sum_{a,b} (f''(\mathbf{0})^{-1})_{a,b}(-\mathrm{i}\partial_a)(-\mathrm{i}\partial_b)$$
$$L_k(A, f) = \sum_{l \le 2k} \frac{\mathcal{D}^{l+k}(A\underline{f}^l)(\mathbf{0})}{(-1)^k 2^{l+k} l! (l+k)!}.$$

For example $L_0(A, f) = A$, $L_1(A, f) = -\mathcal{D}(A)/2 - \mathcal{D}^2(A\underline{f})/8 - \mathcal{D}^3(A\underline{f}^2)/48$.

Bigger challenges

Everything works only in the simple case, where H has a polynomial factorization that coincides with the local analytic factorization at z_{*}.

Bigger challenges

Everything works only in the simple case, where H has a polynomial factorization that coincides with the local analytic factorization at z_{*}.

 Detecting whether we are in this case is easy (irreducible factors are everywhere smooth).

Bigger challenges

- Everything works only in the simple case, where H has a polynomial factorization that coincides with the local analytic factorization at z_{*}.
- Detecting whether we are in this case is easy (irreducible factors are everywhere smooth).
- However if we are not in this case, we currently have no way to proceed. Such problems do arise rather frequently in applications.

Some conceptual difficulties

 Our methods are analytic, so computations should be carried out in the analytic local ring (the ring of germs of holomorphic functions at a point).

Some conceptual difficulties

- Our methods are analytic, so computations should be carried out in the analytic local ring (the ring of germs of holomorphic functions at a point).
- Computation in this ring is trickier than in polynomial rings. However there is a theory of computation in local rings and apparently SINGULAR implements some of it.

Some conceptual difficulties

- Our methods are analytic, so computations should be carried out in the analytic local ring (the ring of germs of holomorphic functions at a point).
- Computation in this ring is trickier than in polynomial rings. However there is a theory of computation in local rings and apparently SINGULAR implements some of it.

Help wanted in finding the state of the art!

• Given F = 1/H where H is irreducible, given by $H(x, y) = 19 - 20x - 20y + 5x^2 + 14xy + 5y^2 - 2x^2y - 2xy^2 + x^2y^2$.

- Given F = 1/H where H is irreducible, given by $H(x, y) = 19 20x 20y + 5x^2 + 14xy + 5y^2 2x^2y 2xy^2 + x^2y^2$.
- ► Here V is smooth at every point except (1,1), which we see by solving the system {H = 0, ∇ H = 0}.

- ► Given F = 1/H where H is irreducible, given by $H(x, y) = 19 20x 20y + 5x^2 + 14xy + 5y^2 2x^2y 2xy^2 + x^2y^2$.
- ► Here V is smooth at every point except (1, 1), which we see by solving the system {H = 0, ∇ H = 0}.
- ▶ At (1,1), changing variables to h(u,v) := H(1+u, 1+v), we see that $h(u,v) = 4u^2 + 10uv + 4v^2 + C(u,v)$ where C has no terms of degree less than 3.

- ► Given F = 1/H where H is irreducible, given by $H(x, y) = 19 20x 20y + 5x^2 + 14xy + 5y^2 2x^2y 2xy^2 + x^2y^2$.
- ► Here V is smooth at every point except (1,1), which we see by solving the system {H = 0, ∇ H = 0}.
- ▶ At (1,1), changing variables to h(u,v) := H(1+u, 1+v), we see that $h(u,v) = 4u^2 + 10uv + 4v^2 + C(u,v)$ where C has no terms of degree less than 3.
- ► The quadratic part factors into distinct factors, showing that (1,1) is a transverse multiple point.

- ► Given F = 1/H where H is irreducible, given by $H(x, y) = 19 20x 20y + 5x^2 + 14xy + 5y^2 2x^2y 2xy^2 + x^2y^2$.
- ► Here V is smooth at every point except (1,1), which we see by solving the system {H = 0, ∇ H = 0}.
- At (1,1), changing variables to h(u,v) := H(1+u, 1+v), we see that $h(u,v) = 4u^2 + 10uv + 4v^2 + C(u,v)$ where C has no terms of degree less than 3.
- ► The quadratic part factors into distinct factors, showing that (1,1) is a transverse multiple point.
- ► The current implementation does not deal with this at all, but we can compute by hand in this case to see that a_{rr} ~ 1/6.

• Given F = G/H where G = 1, $H_1 = 3 - 2x - y$, $H_2 = 3 - x - 2y$, $H = H_1H_2$.

- ► Given F = G/H where G = 1, $H_1 = 3 2x y$, $H_2 = 3 - x - 2y$, $H = H_1H_2$.
- ► Here V is smooth at every point except (1, 1). We are in the simple case.

- ► Given F = G/H where G = 1, $H_1 = 3 2x y$, $H_2 = 3 - x - 2y$, $H = H_1H_2$.
- ► Here V is smooth at every point except (1,1). We are in the simple case.
- We obtain $a_{rr} \sim 3$ by multiple point formula below.

- ► Given F = G/H where G = 1, $H_1 = 3 2x y$, $H_2 = 3 - x - 2y$, $H = H_1H_2$.
- ► Here V is smooth at every point except (1,1). We are in the simple case.
- We obtain $a_{rr} \sim 3$ by multiple point formula below.
- ▶ If we change to G = x y, our implementation gives $a_{rr} \sim 0$, which is correct, but only by luck.

- Given F = G/H where G = 1, $H_1 = 3 2x y$, $H_2 = 3 - x - 2y$, $H = H_1H_2$.
- ► Here V is smooth at every point except (1,1). We are in the simple case.
- We obtain $a_{rr} \sim 3$ by multiple point formula below.
- ▶ If we change to G = x y, our implementation gives $a_{rr} \sim 0$, which is correct, but only by luck.
- ▶ Here G is in the ideal $\langle H_1, H_2 \rangle$, $G = H_2 H_1$ so

$$\frac{G}{H} = \frac{1}{3 - 2x - y} - \frac{1}{3 - x - 2y}.$$

- ► Given F = G/H where G = 1, $H_1 = 3 2x y$, $H_2 = 3 - x - 2y$, $H = H_1H_2$.
- ► Here V is smooth at every point except (1,1). We are in the simple case.
- We obtain $a_{rr} \sim 3$ by multiple point formula below.
- ► If we change to G = x y, our implementation gives $a_{rr} \sim 0$, which is correct, but only by luck.
- ▶ Here G is in the ideal $\langle H_1, H_2 \rangle$, $G = H_2 H_1$ so

$$\frac{G}{H} = \frac{1}{3 - 2x - y} - \frac{1}{3 - x - 2y}$$

Thus it is not always even obvious whether a point is smooth, and vanishing numerator affects exponential rate.

► Here F = G/H where G = x - y, $H_1 = 1 - (1/6)x - (5/6)y^2$, $H_2 = 1 - (5/6)x^2 - (1/6)y^2$, $H = H_1H_2$.

► Here F = G/H where G = x - y, $H_1 = 1 - (1/6)x - (5/6)y^2$, $H_2 = 1 - (5/6)x^2 - (1/6)y^2$, $H = H_1H_2$.

• Again \mathcal{V} is clearly smooth at every point except (1,1).

- ► Here F = G/H where G = x y, $H_1 = 1 (1/6)x (5/6)y^2$, $H_2 = 1 (5/6)x^2 (1/6)y^2$, $H = H_1H_2$.
- Again \mathcal{V} is clearly smooth at every point except (1,1).
- Our current implementation gives $a_{rr} \sim 0$, but this is wrong.

- ► Here F = G/H where G = x y, $H_1 = 1 (1/6)x (5/6)y^2$, $H_2 = 1 - (5/6)x^2 - (1/6)y^2$, $H = H_1H_2$.
- Again \mathcal{V} is clearly smooth at every point except (1,1).
- Our current implementation gives $a_{rr} \sim 0$, but this is wrong.

• Here G is not in the ideal $\langle H_1, H_2 \rangle$ of the polynomial ring.

- ► Here F = G/H where G = x y, $H_1 = 1 (1/6)x (5/6)y^2$, $H_2 = 1 - (5/6)x^2 - (1/6)y^2$, $H = H_1H_2$.
- Again \mathcal{V} is clearly smooth at every point except (1,1).
- Our current implementation gives $a_{rr} \sim 0$, but this is wrong.
- Here G is not in the ideal $\langle H_1, H_2 \rangle$ of the polynomial ring.
- ▶ We need to go to the local analytic ring. Ring theoretic arguments (Nullstellensatz, Noetherianity) show that G must lie in the ideal generated by H₁, H₂ and a simplification again occurs. Again we will have smooth point behaviour.

- ► Here F = G/H where G = x y, $H_1 = 1 (1/6)x (5/6)y^2$, $H_2 = 1 - (5/6)x^2 - (1/6)y^2$, $H = H_1H_2$.
- Again \mathcal{V} is clearly smooth at every point except (1,1).
- Our current implementation gives $a_{rr} \sim 0$, but this is wrong.
- Here G is not in the ideal $\langle H_1, H_2 \rangle$ of the polynomial ring.
- ▶ We need to go to the local analytic ring. Ring theoretic arguments (Nullstellensatz, Noetherianity) show that G must lie in the ideal generated by H₁, H₂ and a simplification again occurs. Again we will have smooth point behaviour.
- How to do this algorithmically?