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ACSV: help wanted from computer algebra(ists)

Standing assumptions

I We use boldface to denote a multi-index: z = (z1, . . . , zd),
r = (r1, . . . , rd). Similarly zr = zr11 . . . zrdd .

I A (multivariate) sequence is a function a : Nd → C for some
fixed d. Usually write ar instead of a(r).

I The generating function (GF) is the formal power series

F (z) =
∑
r∈Nd

arz
r.

I Assume F (z) = G(z)/H(z) where G,H are polynomials. The
singular variety V := {z : H(z) = 0} consists of poles.

I To avoid discussing complicated topology, assume all
coefficients of F are nonnegative.
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Example (Some examples)

I Binomial coefficients G = 1, H = 1− x− y, ars =
(
r+s
s

)

I Delannoy numbers: G = 1, H = 1− x− y − xy
I Lattice walks in quarter plane, negative drift:

G = (1 + x)(1− 2t(1 + x2))

H = (1− y)(1− t(1 + x2 + xy2))(1− t(1 + x2)).

I Lemniscate: G = 1,

H = 19−20x−20y+5x2+14xy+5y2−2x2y−2xy2+x2y2.

I Cubical tensors
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Outline of ACSV results

I Given a direction r, computing asymptotics of ar in that
direction involves restriction to a variety crit(r) of critical
points.

I Only points in a subset contrib(r) ⊆ crit(r) actually
contribute to asymptotics.

I For p ∈ contrib(r), there is a full asymptotic series A(p)
depending on the type of singularity at p. Each term is
computable from finitely many derivatives of G and H at z.

I This yields an asymptotic expansion

ar ∼
∑

p∈contrib(r)

p−rA(p)

that is uniform on compact subsets of directions, provided the
geometry at p does not change.
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Outline of ACSV results, continued

I crit(r) is the set of solutions to a polynomial system, and
generically finite.

I There is an element of contrib(r) having all positive
coordinates.

I We have full results for smooth and transverse multiple local
geometry of critical points.

I We can check p ∈ contrib(r) by checking whether r belongs
to a certain real positive cone K(p).
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Simplest asymptotic formulae

I Smooth point:

ar ∼ z∗(r)
−r

√
1

(2π|r|)d−1κ(z∗(r))
G(z∗(r))

| ∇logH(z∗(r))|

where |r| =
∑

i ri and κ is the Gaussian curvature of logV at
log z∗(r).

I The Gaussian curvature can be computed explicitly in terms
of derivatives of H to second order.

I Simplest multiple point:

ar ∼ z∗(r)
−rG(z∗(r)) detJ(z∗(r))

−1

where J is the Jacobian matrix (∂Hi/∂zj) and H =
∏

iHi.
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Why we need computer algebra

1. Conversion of G/H to various forms.

2. Computing crit(r).

3. Classification of local geometry at critical points.

4. Determining which critical points contribute.

5. Explicit formulae for higher order asymptotics.
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Implementation

I Our basic results for smooth and multiple points are
implemented in open source software mostly written by Alex
Raichev.

I This was a standalone package but thanks to Daniel Krenn it
is now part of the core Sage distribution:
multivariate generating functions inside
sage.rings.asymptotic.asymptotics.

I It has a few thousand lines of code. I am slowly making some
improvements.

I Main features:

I Find and classify smooth and multiple points.
I Asymptotic contribution to arbitrary order at a smooth or

multiple point, symbolic or numeric.
I Auxiliary functions to convert G/H to various forms.
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Status of package

1. Conversion of G/H to various forms.

2. Computing crit(r).

3. Classification of local geometry of critical points.

4. Determining which critical points contribute.

5. Explicit formulae for higher order asymptotics.
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Relatively easy improvements

I Classifying critical points by geometry.

I Expression swell with algebraic numbers causes slowdown -
change code to reduce modulo minimal polynomial.

I Exception handling.

I Putting everything together (non-interactive mode).
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Medium level improvements

I Finding all the contributing singularities.

I Given a direction lying in a nontrivial cone, find which point
controls this cone.

I Determine whether a direction lies inside a cone not given by
rational extreme rays (Cone package can’t handle).

I Improvements to speed of higher order asymptotic
computations.
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Hörmander’s explicit formula for integral asymptotics
For an isolated nondegenerate stationary point 0 in dimension d,

I(λ) ∼
(
det

(
λf ′′(0)

2π

))−1/2∑
k≥0

λ−kLk(A, f)

where Lk is a differential operator of order 2k evaluated at 0:

f(t) = f(t)− (1/2)tf ′′(0)tT

D =
∑
a,b

(f ′′(0)−1)a,b(−i∂a)(−i∂b)

Lk(A, f) =
∑
l≤2k

Dl+k(Af l)(0)

(−1)k2l+kl!(l + k)!
.

For example L0(A, f) = A,
L1(A, f) = −D(A)/2−D2(Af)/8−D3(Af2)/48.



ACSV: help wanted from computer algebra(ists)

Bigger challenges

I Everything works only in the simple case, where H has a
polynomial factorization that coincides with the local analytic
factorization at z∗.

I Detecting whether we are in this case is easy (irreducible
factors are everywhere smooth).

I However if we are not in this case, we currently have no way
to proceed. Such problems do arise rather frequently in
applications.
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Some conceptual difficulties

I Our methods are analytic, so computations should be carried
out in the analytic local ring (the ring of germs of
holomorphic functions at a point).

I Computation in this ring is trickier than in polynomial rings.
However there is a theory of computation in local rings and
apparently SINGULAR implements some of it.

I Help wanted in finding the state of the art!
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Example (local factorization of lemniscate)

I Given F = 1/H where H is irreducible, given by H(x, y) =
19− 20x− 20y + 5x2 + 14xy + 5y2 − 2x2y − 2xy2 + x2y2.

I Here V is smooth at every point except (1, 1), which we see
by solving the system {H = 0,∇H = 0}.

I At (1, 1), changing variables to h(u, v) := H(1 + u, 1 + v), we
see that h(u, v) = 4u2 + 10uv + 4v2 + C(u, v) where C has
no terms of degree less than 3.

I The quadratic part factors into distinct factors, showing that
(1, 1) is a transverse multiple point.

I The current implementation does not deal with this at all, but
we can compute by hand in this case to see that arr ∼ 1/6.
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ACSV: help wanted from computer algebra(ists)

Example (effect of numerator, I)

I Given F = G/H where G = 1, H1 = 3− 2x− y,
H2 = 3− x− 2y, H = H1H2.

I Here V is smooth at every point except (1, 1). We are in the
simple case.

I We obtain arr ∼ 3 by multiple point formula below.

I If we change to G = x− y, our implementation gives arr ∼ 0,
which is correct, but only by luck.

I Here G is in the ideal 〈H1, H2〉, G = H2 −H1 so

G

H
=

1

3− 2x− y
− 1

3− x− 2y
.

I Thus it is not always even obvious whether a point is smooth,
and vanishing numerator affects exponential rate.
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ACSV: help wanted from computer algebra(ists)

Example (effect of numerator, II)

I Here F = G/H where G = x− y, H1 = 1− (1/6)x− (5/6)y2,
H2 = 1− (5/6)x2 − (1/6)y2, H = H1H2.

I Again V is clearly smooth at every point except (1, 1).

I Our current implementation gives arr ∼ 0, but this is wrong.

I Here G is not in the ideal 〈H1, H2〉 of the polynomial ring.

I We need to go to the local analytic ring. Ring theoretic
arguments (Nullstellensatz, Noetherianity) show that G must
lie in the ideal generated by H1, H2 and a simplification again
occurs. Again we will have smooth point behaviour.

I How to do this algorithmically?
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