$a[j], j$ uniformly randomly chosen from $1 . . n-i$. Claim: a now represents a uniform sample from the set of cyclic permutations of the original array.

- Examples: $j=n-i$ for each i yields $n \rightarrow n-1 \cdots \rightarrow 1 \rightarrow n ; j=1$ for each i yields $1 \rightarrow \cdots n \rightarrow 1$.
- Number of swaps is always $n-1$. Other quantities of interest: number of moves by a given element, distance moved by a given element, total distance moved.

Proof of correctness

- $\mathcal{C}_{n} \cong \mathcal{C}_{n-1} \times \mathcal{N}$ via maps
$(\sigma, q)^{\uparrow}=\sigma^{*} \tau \quad$ where τ is the transposit
$\sigma_{\downarrow}=(\tau \sigma)_{*} \quad$ where τ is the transposit

