Lattice path asymptotics via Analytic Combinatorics in Several Variables

Mark C．Wilson
Department of Computer Science
University of Auckland

CANADAM，Saskatoon，2015－06－01

Main references

- R. Pemantle and M.C. Wilson, Analytic Combinatorics in Several Variables, Cambridge University Press 2013. https://www.cs.auckland.ac.nz/~mcw/Research/mvGF/ asymultseq/ACSVbook/

Main references

- R. Pemantle and M.C. Wilson, Analytic Combinatorics in Several Variables, Cambridge University Press 2013. https://www.cs.auckland.ac.nz/~mcw/Research/mvGF/ asymultseq/ACSVbook/
- R. Pemantle and M.C. Wilson, Twenty Combinatorial Examples of Asymptotics Derived from Multivariate Generating Functions, SIAM Review 2008.

Main references

- R. Pemantle and M.C. Wilson, Analytic Combinatorics in Several Variables, Cambridge University Press 2013. https://www.cs.auckland.ac.nz/~mcw/Research/mvGF/ asymultseq/ACSVbook/
- R. Pemantle and M.C. Wilson, Twenty Combinatorial Examples of Asymptotics Derived from Multivariate Generating Functions, SIAM Review 2008.
- Sage implementations by Alex Raichev: https://github.com/araichev/amgf.

Example (A test problem)

- How many n-step nearest neighbour walks are there, if walks start from the origin, are confined to the first quadrant, and take steps in $\{(0,-1),(-1,1),(1,1)\}$? Call this a_{n}.

Example (A test problem)

- How many n-step nearest neighbour walks are there, if walks start from the origin, are confined to the first quadrant, and take steps in $\{(0,-1),(-1,1),(1,1)\}$? Call this a_{n}.
- Conjectured by Bostan \& Kauers:

$$
a_{n} \sim 3^{n} \sqrt{\frac{3}{4 \pi n}}
$$

Overview

- Consider nearest-neighbour walks in \mathbb{Z}^{d}, defined by a set $S \subseteq\{-1,0,1\}^{d} \backslash\{\mathbf{0}\}$ of allowed steps. Define

$$
S_{j}=\{i:(i, j) \in S\} \quad \text { for each } j \in\{-1,0,1\}
$$

Overview

- Consider nearest-neighbour walks in \mathbb{Z}^{d}, defined by a set $S \subseteq\{-1,0,1\}^{d} \backslash\{\mathbf{0}\}$ of allowed steps. Define

$$
S_{j}=\{i:(i, j) \in S\} \quad \text { for each } j \in\{-1,0,1\}
$$

- We can consider unrestricted walks, walks restricted to a halfspace, and walks restricted to the positive orthant. The last is the most challenging, and we concentrate on it today.

Overview

- Consider nearest-neighbour walks in \mathbb{Z}^{d}, defined by a set $S \subseteq\{-1,0,1\}^{d} \backslash\{\mathbf{0}\}$ of allowed steps. Define

$$
S_{j}=\{i:(i, j) \in S\} \quad \text { for each } j \in\{-1,0,1\}
$$

- We can consider unrestricted walks, walks restricted to a halfspace, and walks restricted to the positive orthant. The last is the most challenging, and we concentrate on it today.
- We can keep track of the endpoint, and also the length. This gives a $d+1$-variate sequence $a_{\mathbf{r}, n}$ with generating function $\sum_{\mathbf{r}, n} a_{\mathbf{r}, n} \mathbf{x}^{\mathbf{r}} t^{n}$.

Overview

- Consider nearest-neighbour walks in \mathbb{Z}^{d}, defined by a set $S \subseteq\{-1,0,1\}^{d} \backslash\{\mathbf{0}\}$ of allowed steps. Define

$$
S_{j}=\{i:(i, j) \in S\} \quad \text { for each } j \in\{-1,0,1\}
$$

- We can consider unrestricted walks, walks restricted to a halfspace, and walks restricted to the positive orthant. The last is the most challenging, and we concentrate on it today.
- We can keep track of the endpoint, and also the length. This gives a $d+1$-variate sequence $a_{\mathbf{r}, n}$ with generating function $\sum_{\mathbf{r}, n} a_{\mathbf{r}, n} \mathbf{x}^{\mathbf{r}} t^{n}$.
- Summing over \mathbf{r} gives a univariate series $\sum_{n} f(n) t^{n}$.

Overview

- Consider nearest-neighbour walks in \mathbb{Z}^{d}, defined by a set $S \subseteq\{-1,0,1\}^{d} \backslash\{\mathbf{0}\}$ of allowed steps. Define

$$
S_{j}=\{i:(i, j) \in S\} \quad \text { for each } j \in\{-1,0,1\}
$$

- We can consider unrestricted walks, walks restricted to a halfspace, and walks restricted to the positive orthant. The last is the most challenging, and we concentrate on it today.
- We can keep track of the endpoint, and also the length. This gives a $d+1$-variate sequence $a_{\mathbf{r}, n}$ with generating function $\sum_{\mathbf{r}, n} a_{\mathbf{r}, n} \mathbf{x}^{\mathbf{r}} t^{n}$.
- Summing over \mathbf{r} gives a univariate series $\sum_{n} f(n) t^{n}$.
- We seek in particular the asymptotics of $f(n)$.

Previous work, I

- Bousquet-Mélou \& Mishna (2010) showed that for $d=2$ there are 79 inequivalent nontrivial cases.

Previous work, I

- Bousquet-Mélou \& Mishna (2010) showed that for $d=2$ there are 79 inequivalent nontrivial cases.
- They introduced the symmetry group $G(S)$ and showed that this is finite in exactly 23 cases.

Previous work, I

- Bousquet-Mélou \& Mishna (2010) showed that for $d=2$ there are 79 inequivalent nontrivial cases.
- They introduced the symmetry group $G(S)$ and showed that this is finite in exactly 23 cases.
- They used this to show for 22 cases that F is D-finite. For 19 of these, used the orbit sum method and for 3 more, the half orbit sum method.

Previous work, II

- Bostan \& Kauers (2009): for $d=2$, conjectured asymptotics for $f(n)$ in the 23 cases.

Previous work, II

- Bostan \& Kauers (2009): for $d=2$, conjectured asymptotics for $f(n)$ in the 23 cases.
- Bostan \& Kauers (2010): for $d=2$, explicitly showed the 23rd case (Gessel walks) has algebraic f.

Previous work, II

- Bostan \& Kauers (2009): for $d=2$, conjectured asymptotics for $f(n)$ in the 23 cases.
- Bostan \& Kauers (2010): for $d=2$, explicitly showed the 23rd case (Gessel walks) has algebraic f.
- Melczer \& Mishna (2014): for arbitrary d, G maximal, derived asymptotics for $f(n)$.

Previous work, II

- Bostan \& Kauers (2009): for $d=2$, conjectured asymptotics for $f(n)$ in the 23 cases.
- Bostan \& Kauers (2010): for $d=2$, explicitly showed the 23rd case (Gessel walks) has algebraic f.
- Melczer \& Mishna (2014): for arbitrary d, G maximal, derived asymptotics for $f(n)$.
- Bostan, Chyzak, van Hoeij, Kauers \& Pech: for $d=2$, expressed f in terms of hypergeometric integrals in the 23 cases. We use their numbering of the cases.

Previous work, II

- Bostan \& Kauers (2009): for $d=2$, conjectured asymptotics for $f(n)$ in the 23 cases.
- Bostan \& Kauers (2010): for $d=2$, explicitly showed the 23rd case (Gessel walks) has algebraic f.
- Melczer \& Mishna (2014): for arbitrary d, G maximal, derived asymptotics for $f(n)$.
- Bostan, Chyzak, van Hoeij, Kauers \& Pech: for $d=2$, expressed f in terms of hypergeometric integrals in the 23 cases. We use their numbering of the cases.
- Open: proof of asymptotics of $f(n)$ for cases 5-16. We solve that here.

ACSV

- Robin Pemantle and I derived general formulae for asymptotics of coefficients of rational functions $F=G / H$ in dimension d (see the book).

ACSV

- Robin Pemantle and I derived general formulae for asymptotics of coefficients of rational functions $F=G / H$ in dimension d (see the book).
- Analysis is based on the geometry of the singular variety (zero-set of H) near contributing critical points \mathbf{z}_{*} depending on the direction \mathbf{r}.

ACSV

- Robin Pemantle and I derived general formulae for asymptotics of coefficients of rational functions $F=G / H$ in dimension d (see the book).
- Analysis is based on the geometry of the singular variety (zero-set of H) near contributing critical points \mathbf{z}_{*} depending on the direction \mathbf{r}.
- The ultimate justification involves Morse theory, but this can be mostly ignored in the aperiodic combinatorial case.
- Robin Pemantle and I derived general formulae for asymptotics of coefficients of rational functions $F=G / H$ in dimension d (see the book).
- Analysis is based on the geometry of the singular variety (zero-set of H) near contributing critical points \mathbf{z}_{*} depending on the direction \mathbf{r}.
- The ultimate justification involves Morse theory, but this can be mostly ignored in the aperiodic combinatorial case.
- We deal in particular with multiple points (locally a transverse intersection of k smooth factors). If $1 \leq k \leq d$, formulae are of the form

$$
a_{\mathbf{r}} \sim \mathbf{z}_{*}{ }^{-} \mathbf{r} \sum_{l} b_{l}\|\mathbf{r}\|^{-(d-k) / 2-l}
$$

Diagonals

- The orbit sum approach yields F as the positive part of a rational series.

Diagonals

- The orbit sum approach yields F as the positive part of a rational series.
- This is the leading diagonal of a closely related series F.

Diagonals

- The orbit sum approach yields F as the positive part of a rational series.
- This is the leading diagonal of a closely related series F.
- The GF for walks restricted to the quarter plane has the form

$$
f=\operatorname{diag} \frac{x y P\left(x^{-1}, y^{-1}\right)}{\left(1-\operatorname{txyS}\left(x^{-1}, y^{-1}\right)\right)(1-x)(1-y)}
$$

where

$$
\begin{aligned}
& S(x, y)=\sum_{(i, j) \in S} x^{i} y^{j} \\
& P(x, y)=\sum_{\sigma \in G} \operatorname{sign}(\sigma) \sigma(x y)
\end{aligned}
$$

Singularities

- The factor $H_{1}:=1-\operatorname{txy} S\left(x^{-1}, y^{-1}\right)$ is a polynomial. Its gradient simplifies to $(-1+t y \partial S / \partial x,-1+t x \partial S / \partial y,-1)$ and thus this factor is everywhere smooth.

Singularities

- The factor $H_{1}:=1-\operatorname{txy} S\left(x^{-1}, y^{-1}\right)$ is a polynomial. Its gradient simplifies to $(-1+t y \partial S / \partial x,-1+t x \partial S / \partial y,-1)$ and thus this factor is everywhere smooth.
- Other singularities come from factors of $(1-x),(1-y)$ and possibly from clearing denominators of $x y P\left(x^{-1}, y^{-1}\right)$.

Singularities

- The factor $H_{1}:=1-\operatorname{txy} S\left(x^{-1}, y^{-1}\right)$ is a polynomial. Its gradient simplifies to $(-1+t y \partial S / \partial x,-1+t x \partial S / \partial y,-1)$ and thus this factor is everywhere smooth.
- Other singularities come from factors of $(1-x),(1-y)$ and possibly from clearing denominators of $x y P\left(x^{-1}, y^{-1}\right)$.
- When F is combinatorial, there is a dominant singularity for direction 1 lying in the positive orthant.

Critical points

- H_{1} contains a smooth critical point for the direction $(1,1,1)$ if and only if $\nabla S\left(x^{-1}, y^{-1}\right)=0$.

Critical points

- H_{1} contains a smooth critical point for the direction $(1,1,1)$ if and only if $\nabla S\left(x^{-1}, y^{-1}\right)=0$.
- This occurs if and only if

$$
\begin{aligned}
\sum_{i=-1, j} y^{j}-x^{-2} \sum_{i=1, j} y^{j} & =0 \\
\sum_{i \in S_{-1}} x^{i}-y^{-2} \sum_{i \in S_{1}} x^{i} & =0
\end{aligned}
$$

Critical points

- H_{1} contains a smooth critical point for the direction $(1,1,1)$ if and only if $\nabla S\left(x^{-1}, y^{-1}\right)=0$.
- This occurs if and only if

$$
\begin{aligned}
\sum_{i=-1, j} y^{j}-x^{-2} \sum_{i=1, j} y^{j} & =0 \\
\sum_{i \in S_{-1}} x^{i}-y^{-2} \sum_{i \in S_{1}} x^{i} & =0
\end{aligned}
$$

- If S has a vertical axis of symmetry, then $\left(x^{2}-1\right) \sum_{j} y^{j}=0$.

Structure of G

- Write

$$
\begin{aligned}
S(x, y) & =y^{-1} A_{-1}(x)+A_{0}(x)+y A_{1}(x) \\
& =x^{-1} B_{-1}(y)+B_{0}(y)+x B_{1}(y) .
\end{aligned}
$$

Structure of G

- Write

$$
\begin{aligned}
S(x, y) & =y^{-1} A_{-1}(x)+A_{0}(x)+y A_{1}(x) \\
& =x^{-1} B_{-1}(y)+B_{0}(y)+x B_{1}(y) .
\end{aligned}
$$

- G is generated by the involutions (considered as algebra homomorphisms)

$$
\begin{aligned}
(x, y) & \mapsto\left(x^{-1} \frac{B_{-1}(y)}{B_{1}(y)}, y\right) \\
(x, y) & \mapsto\left(x, y^{-1} \frac{A_{-1}(x)}{A_{1}(x)}\right)
\end{aligned}
$$

Structure of G

- Write

$$
\begin{aligned}
S(x, y) & =y^{-1} A_{-1}(x)+A_{0}(x)+y A_{1}(x) \\
& =x^{-1} B_{-1}(y)+B_{0}(y)+x B_{1}(y) .
\end{aligned}
$$

- G is generated by the involutions (considered as algebra homomorphisms)

$$
\begin{aligned}
(x, y) & \mapsto\left(x^{-1} \frac{B_{-1}(y)}{B_{1}(y)}, y\right) \\
(x, y) & \mapsto\left(x, y^{-1} \frac{A_{-1}(x)}{A_{1}(x)}\right)
\end{aligned}
$$

- If S has vertical symmetry then $B_{1}=B_{-1}$, these maps commute, and G has order 4.

Vertical axis of symmetry, I

- This covers Cases 1-16. The possible denominators from P are $x^{2}+1, x^{2}+x+1$. Neither can contribute because the problem is combinatorial and aperiodic. The dominant point has $x=1$.

Vertical axis of symmetry, I

- This covers Cases 1-16. The possible denominators from P are $x^{2}+1, x^{2}+x+1$. Neither can contribute because the problem is combinatorial and aperiodic. The dominant point has $x=1$.
- The numerator vanishes iff $\left|S_{1}\right|=\left|S_{-1}\right|$. In that case cancellation occurs and $k=1$. This solves Cases 1-4: leading term $C|S|^{n} n^{-1 / 2}$.

Vertical axis of symmetry, I

- This covers Cases 1-16. The possible denominators from P are $x^{2}+1, x^{2}+x+1$. Neither can contribute because the problem is combinatorial and aperiodic. The dominant point has $x=1$.
- The numerator vanishes iff $\left|S_{1}\right|=\left|S_{-1}\right|$. In that case cancellation occurs and $k=1$. This solves Cases 1-4: leading term $C|S|^{n} n^{-1 / 2}$.
- Otherwise, there is a double point $(k=2)$ at $(1,1,|S|)$. Its contribution is nonzero if and only if the numerator does not vanish and the direction $(1,1,1)$ lies in a certain cone.

Vertical axis of symmetry, I

- This covers Cases 1-16. The possible denominators from P are $x^{2}+1, x^{2}+x+1$. Neither can contribute because the problem is combinatorial and aperiodic. The dominant point has $x=1$.
- The numerator vanishes iff $\left|S_{1}\right|=\left|S_{-1}\right|$. In that case cancellation occurs and $k=1$. This solves Cases 1-4: leading term $C|S|^{n} n^{-1 / 2}$.
- Otherwise, there is a double point $(k=2)$ at $(1,1,|S|)$. Its contribution is nonzero if and only if the numerator does not vanish and the direction $(1,1,1)$ lies in a certain cone.
- The direction lies in the cone iff $\partial S / \partial x(1,1) \geq 0$, iff $\left|S_{1}\right| \geq\left|S_{-1}\right|$ (happens in Cases 1-10).

Vertical axis of symmetry, I

- This covers Cases 1-16. The possible denominators from P are $x^{2}+1, x^{2}+x+1$. Neither can contribute because the problem is combinatorial and aperiodic. The dominant point has $x=1$.
- The numerator vanishes iff $\left|S_{1}\right|=\left|S_{-1}\right|$. In that case cancellation occurs and $k=1$. This solves Cases 1-4: leading term $C|S|^{n} n^{-1 / 2}$.
- Otherwise, there is a double point $(k=2)$ at $(1,1,|S|)$. Its contribution is nonzero if and only if the numerator does not vanish and the direction $(1,1,1)$ lies in a certain cone.
- The direction lies in the cone iff $\partial S / \partial x(1,1) \geq 0$, iff $\left|S_{1}\right| \geq\left|S_{-1}\right|$ (happens in Cases 1-10).
- Thus for Cases 5-10 we have leading term $C|S|^{n} n^{-1}$.

Vertical axis of symmetry, II

- There is a smooth critical point where $y^{2}=\left|S_{1}\right| /\left|S_{-1}\right|$, so y is a quadratic irrational at worst.

Vertical axis of symmetry, II

- There is a smooth critical point where $y^{2}=\left|S_{1}\right| /\left|S_{-1}\right|$, so y is a quadratic irrational at worst.
- . The exponential rate is

$$
S\left(1, y^{-1}\right)=\left|S_{0}\right|+y^{-1}\left|S_{1}\right|+y\left|S_{-1}\right|=\left|S_{0}\right|+2 \sqrt{\left|S_{1}\right|\left|S_{-1}\right|} .
$$

Vertical axis of symmetry, II

- There is a smooth critical point where $y^{2}=\left|S_{1}\right| /\left|S_{-1}\right|$, so y is a quadratic irrational at worst.
- . The exponential rate is

$$
S\left(1, y^{-1}\right)=\left|S_{0}\right|+y^{-1}\left|S_{1}\right|+y\left|S_{-1}\right|=\left|S_{0}\right|+2 \sqrt{\left|S_{1}\right|\left|S_{-1}\right|} .
$$

- The arithmetic-geometric mean inequality shows that this is smaller than $|S|$, with equality if and only if $\left|S_{1}\right|=\left|S_{-1}\right|$.

Vertical axis of symmetry, II

- There is a smooth critical point where $y^{2}=\left|S_{1}\right| /\left|S_{-1}\right|$, so y is a quadratic irrational at worst.
- . The exponential rate is

$$
S\left(1, y^{-1}\right)=\left|S_{0}\right|+y^{-1}\left|S_{1}\right|+y\left|S_{-1}\right|=\left|S_{0}\right|+2 \sqrt{\left|S_{1}\right|\left|S_{-1}\right|} .
$$

- The arithmetic-geometric mean inequality shows that this is smaller than $|S|$, with equality if and only if $\left|S_{1}\right|=\left|S_{-1}\right|$.
- This holds in Cases 11-16.

Interesting smooth point situation

- Normally the polynomial correction starts with n^{-1}, since $(3-1) / 2=1$. The l th term is of order n^{-l}.

Interesting smooth point situation

- Normally the polynomial correction starts with n^{-1}, since $(3-1) / 2=1$. The l th term is of order n^{-l}.
- If the numerator vanishes at the dominant point, the $l=1$ term vanishes.

Interesting smooth point situation

- Normally the polynomial correction starts with n^{-1}, since $(3-1) / 2=1$. The l th term is of order n^{-l}.
- If the numerator vanishes at the dominant point, the $l=1$ term vanishes.
- This happens in all cases 11-16. The numerator simplifies at the smooth point to $(1+x)\left(1-y^{2}\left|S_{-1}\right| /\left|S_{1}\right|\right.$, which is zero from the critical point equation for y.

Interesting smooth point situation

- Normally the polynomial correction starts with n^{-1}, since $(3-1) / 2=1$. The l th term is of order n^{-l}.
- If the numerator vanishes at the dominant point, the $l=1$ term vanishes.
- This happens in all cases 11-16. The numerator simplifies at the smooth point to $(1+x)\left(1-y^{2}\left|S_{-1}\right| /\left|S_{1}\right|\right.$, which is zero from the critical point equation for y.
- The leading term asymptotic is $C\left(\left|S_{0}\right|+2 \sqrt{\left|S_{1}\right|\left|S_{-1}\right|}\right)^{n} n^{-2}$.

Explanation

- The key quantity for walks with vertical symmetry is the difference between the upward and downward steps.

Explanation

- The key quantity for walks with vertical symmetry is the difference between the upward and downward steps.
- If this is positive, there are more possible walks that don't cross the boundary, so the quarter plane restriction is encountered less often. Asymptotics come from the point ($1,1,1 /|S|)$.

Explanation

- The key quantity for walks with vertical symmetry is the difference between the upward and downward steps.
- If this is positive, there are more possible walks that don't cross the boundary, so the quarter plane restriction is encountered less often. Asymptotics come from the point $(1,1,1 /|S|)$.
- If negative, asymptotics come from the highest smooth point.

Explanation

- The key quantity for walks with vertical symmetry is the difference between the upward and downward steps.
- If this is positive, there are more possible walks that don't cross the boundary, so the quarter plane restriction is encountered less often. Asymptotics come from the point $(1,1,1 /|S|)$.
- If negative, asymptotics come from the highest smooth point.
- This explains Cases $1-16$ in a unified way.

Other cases

- Cases 17-19 also follow as above, with slightly different formulae and more work.

Other cases

- Cases 17-19 also follow as above, with slightly different formulae and more work.
- Cases 20-23 are harder. We don't have a nice diagonal expression, and the conjectured asymptotics show that analysis will be trickier.

Possible future work

- Higher dimensions: $d=3$ has been studied empirically by Bostan, Bousquet-Mélou, Kauers \& Melczer. The orbit sum method appears to work rather rarely, however.

Possible future work

- Higher dimensions: $d=3$ has been studied empirically by Bostan, Bousquet-Mélou, Kauers \& Melczer. The orbit sum method appears to work rather rarely, however.
- Higher dimensions: weaken the condition of MM2014, but keep it nice enough that results for general dimension can be derived.

Appendix: why not use the diagonal method?

- For general $a_{p n, q n, r n}$ we could try to compute the diagonal GF $F_{p q r}(z):=\sum_{n \geq 0} a_{p n, q n, r n} z^{n}$ using the diagonal method as in Stanley.

Appendix: why not use the diagonal method?

- For general $a_{p n, q n, r n}$ we could try to compute the diagonal GF $F_{p q r}(z):=\sum_{n \geq 0} a_{p n, q n, r n} z^{n}$ using the diagonal method as in Stanley.
- However the diagonal is D-finite and there are major computational challenges in computing asymptotics.

Appendix: why not use the diagonal method?

- For general $a_{p n, q n, r n}$ we could try to compute the diagonal GF $F_{p q r}(z):=\sum_{n \geq 0} a_{p n, q n, r n} z^{n}$ using the diagonal method as in Stanley.
- However the diagonal is D-finite and there are major computational challenges in computing asymptotics.
- See Raichev \& Wilson (2007), "A new diagonal method ...".

