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Lattice path asymptotics

Introduction and motivation

Example (A test problem)

I How many n-step nearest neighbour walks are there, if walks
start from the origin, are confined to the first quadrant, and
take steps in {(0,−1), (−1, 1), (1, 1)}? Call this an.

I Conjectured by Bostan & Kauers:

an ∼ 3n
√

3

4πn
.
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Overview

I Consider nearest-neighbour walks in Zd, defined by a set
S ⊆ {−1, 0, 1}d \ {0} of allowed steps. Define

Sj = {i : (i, j) ∈ S} for each j ∈ {−1, 0, 1}.

I We can consider unrestricted walks, walks restricted to a
halfspace, and walks restricted to the positive orthant. The
last is the most challenging, and we concentrate on it today.

I We can keep track of the endpoint, and also the length. This
gives a d+ 1-variate sequence ar,n with generating function∑

r,n ar,nx
rtn.

I Summing over r gives a univariate series
∑

n f(n)t
n.

I We seek in particular the asymptotics of f(n).
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Introduction and motivation

Previous work, I

I Bousquet-Mélou & Mishna (2010) showed that for d = 2
there are 79 inequivalent nontrivial cases.

I They introduced the symmetry group G(S) and showed that
this is finite in exactly 23 cases.

I They used this to show for 22 cases that F is D-finite. For 19
of these, used the orbit sum method and for 3 more, the half
orbit sum method.
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Introduction and motivation

Previous work, II

I Bostan & Kauers (2009): for d = 2, conjectured asymptotics
for f(n) in the 23 cases.

I Bostan & Kauers (2010): for d = 2, explicitly showed the
23rd case (Gessel walks) has algebraic f .

I Melczer & Mishna (2014): for arbitrary d, G maximal, derived
asymptotics for f(n).

I Bostan, Chyzak, van Hoeij, Kauers & Pech: for d = 2,
expressed f in terms of hypergeometric integrals in the 23
cases. We use their numbering of the cases.

I Open: proof of asymptotics of f(n) for cases 5–16. We solve
that here.
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ACSV

I Robin Pemantle and I derived general formulae for
asymptotics of coefficients of rational functions F = G/H in
dimension d (see the book).

I Analysis is based on the geometry of the singular variety
(zero-set of H) near contributing critical points z∗ depending
on the direction r.

I The ultimate justification involves Morse theory, but this can
be mostly ignored in the aperiodic combinatorial case.

I We deal in particular with multiple points (locally a transverse
intersection of k smooth factors). If 1 ≤ k ≤ d, formulae are
of the form

ar ∼ z∗
−r
∑
l

bl||r||−(d−k)/2−l.
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Introduction and motivation

Diagonals

I The orbit sum approach yields F as the positive part of a
rational series.

I This is the leading diagonal of a closely related series F .

I The GF for walks restricted to the quarter plane has the form

f = diag
xyP (x−1, y−1)

(1− txyS(x−1, y−1)) (1− x)(1− y)

where

S(x, y) =
∑

(i,j)∈S

xiyj

P (x, y) =
∑
σ∈G

sign(σ)σ(xy).
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Singularities

I The factor H1 := 1− txyS(x−1, y−1) is a polynomial. Its
gradient simplifies to (−1 + ty∂S/∂x,−1 + tx∂S/∂y,−1)
and thus this factor is everywhere smooth.

I Other singularities come from factors of (1− x), (1− y) and
possibly from clearing denominators of xyP (x−1, y−1).

I When F is combinatorial, there is a dominant singularity for
direction 1 lying in the positive orthant.
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Critical points

I H1 contains a smooth critical point for the direction (1, 1, 1)
if and only if ∇S(x−1, y−1) = 0.

I This occurs if and only if∑
i=−1,j

yj − x−2
∑
i=1,j

yj = 0

∑
i∈S−1

xi − y−2
∑
i∈S1

xi = 0.

I If S has a vertical axis of symmetry, then (x2 − 1)
∑

j y
j = 0.
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Structure of G

I Write

S(x, y) = y−1A−1(x) +A0(x) + yA1(x)

= x−1B−1(y) +B0(y) + xB1(y).

I G is generated by the involutions (considered as algebra
homomorphisms)

(x, y) 7→
(
x−1

B−1(y)

B1(y)
, y

)
(x, y) 7→

(
x, y−1

A−1(x)

A1(x)

)
I If S has vertical symmetry then B1 = B−1, these maps

commute, and G has order 4.
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Vertical axis of symmetry, I

I This covers Cases 1–16. The possible denominators from P
are x2 + 1, x2 + x+ 1. Neither can contribute because the
problem is combinatorial and aperiodic. The dominant point
has x = 1.

I The numerator vanishes iff |S1| = |S−1|. In that case
cancellation occurs and k = 1. This solves Cases 1–4: leading
term C|S|nn−1/2.

I Otherwise, there is a double point (k = 2) at (1, 1, |S|). Its
contribution is nonzero if and only if the numerator does not
vanish and the direction (1, 1, 1) lies in a certain cone.

I The direction lies in the cone iff ∂S/∂x(1, 1) ≥ 0, iff
|S1| ≥ |S−1| (happens in Cases 1–10).

I Thus for Cases 5–10 we have leading term C|S|nn−1.
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Vertical axis of symmetry, II

I There is a smooth critical point where y2 = |S1|/|S−1|, so y is
a quadratic irrational at worst.

I . The exponential rate is

S(1, y−1) = |S0|+ y−1|S1|+ y|S−1| = |S0|+ 2
√
|S1||S−1|.

I The arithmetic-geometric mean inequality shows that this is
smaller than |S|, with equality if and only if |S1| = |S−1|.

I This holds in Cases 11–16.
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Introduction and motivation

Interesting smooth point situation

I Normally the polynomial correction starts with n−1, since
(3− 1)/2 = 1. The lth term is of order n−l.

I If the numerator vanishes at the dominant point, the l = 1
term vanishes.

I This happens in all cases 11-16. The numerator simplifies at
the smooth point to (1 + x)(1− y2|S−1|/|S1|, which is zero
from the critical point equation for y.

I The leading term asymptotic is C(|S0|+ 2
√
|S1||S−1|)nn−2.
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Explanation

I The key quantity for walks with vertical symmetry is the
difference between the upward and downward steps.

I If this is positive, there are more possible walks that don’t
cross the boundary, so the quarter plane restriction is
encountered less often. Asymptotics come from the point
(1, 1, 1/|S|).

I If negative, asymptotics come from the highest smooth point.

I This explains Cases 1-16 in a unified way.
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Other cases

I Cases 17–19 also follow as above, with slightly different
formulae and more work.

I Cases 20–23 are harder. We don’t have a nice diagonal
expression, and the conjectured asymptotics show that
analysis will be trickier.
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Possible future work

I Higher dimensions: d = 3 has been studied empirically by
Bostan, Bousquet-Mélou, Kauers & Melczer. The orbit sum
method appears to work rather rarely, however.

I Higher dimensions: weaken the condition of MM2014, but
keep it nice enough that results for general dimension can be
derived.
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Appendix: why not use the diagonal method?

I For general apn,qn,rn we could try to compute the diagonal GF
Fpqr(z) :=

∑
n≥0 apn,qn,rnz

n using the diagonal method as in
Stanley.

I However the diagonal is D-finite and there are major
computational challenges in computing asymptotics.

I See Raichev & Wilson (2007), “A new diagonal method ...”.
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