Lattice path asymptotics via Analytic Combinatorics in Several Variables

> Mark C. Wilson Department of Computer Science University of Auckland

CANADAM, Saskatoon, 2015-06-01

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Main references

R. Pemantle and M.C. Wilson, Analytic Combinatorics in Several Variables, Cambridge University Press 2013. https://www.cs.auckland.ac.nz/~mcw/Research/mvGF/ asymultseq/ACSVbook/

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Main references

 R. Pemantle and M.C. Wilson, Analytic Combinatorics in Several Variables, Cambridge University Press 2013. https://www.cs.auckland.ac.nz/~mcw/Research/mvGF/ asymultseq/ACSVbook/

 R. Pemantle and M.C. Wilson, Twenty Combinatorial Examples of Asymptotics Derived from Multivariate Generating Functions, SIAM Review 2008.

Main references

 R. Pemantle and M.C. Wilson, Analytic Combinatorics in Several Variables, Cambridge University Press 2013. https://www.cs.auckland.ac.nz/~mcw/Research/mvGF/ asymultseq/ACSVbook/

- R. Pemantle and M.C. Wilson, Twenty Combinatorial Examples of Asymptotics Derived from Multivariate Generating Functions, SIAM Review 2008.
- Sage implementations by Alex Raichev: https://github.com/araichev/amgf.

Example (A test problem)

▶ How many *n*-step nearest neighbour walks are there, if walks start from the origin, are confined to the first quadrant, and take steps in $\{(0, -1), (-1, 1), (1, 1)\}$? Call this a_n .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example (A test problem)

- ▶ How many n-step nearest neighbour walks are there, if walks start from the origin, are confined to the first quadrant, and take steps in {(0, -1), (-1, 1), (1, 1)}? Call this a_n.
- Conjectured by Bostan & Kauers:

$$a_n \sim 3^n \sqrt{\frac{3}{4\pi n}}$$

• Consider nearest-neighbour walks in \mathbb{Z}^d , defined by a set $S \subseteq \{-1, 0, 1\}^d \setminus \{\mathbf{0}\}$ of allowed steps. Define

 $S_j = \{i : (i, j) \in S\}$ for each $j \in \{-1, 0, 1\}$.

• Consider nearest-neighbour walks in \mathbb{Z}^d , defined by a set $S \subseteq \{-1, 0, 1\}^d \setminus \{\mathbf{0}\}$ of allowed steps. Define

 $S_j = \{i: (i,j) \in S\} \qquad \text{for each } j \in \{-1,0,1\}.$

We can consider unrestricted walks, walks restricted to a halfspace, and walks restricted to the positive orthant. The last is the most challenging, and we concentrate on it today.

• Consider nearest-neighbour walks in \mathbb{Z}^d , defined by a set $S \subseteq \{-1, 0, 1\}^d \setminus \{\mathbf{0}\}$ of allowed steps. Define

 $S_j = \{i: (i,j) \in S\} \qquad \text{for each } j \in \{-1,0,1\}.$

- We can consider unrestricted walks, walks restricted to a halfspace, and walks restricted to the positive orthant. The last is the most challenging, and we concentrate on it today.
- We can keep track of the endpoint, and also the length. This gives a d + 1-variate sequence a_{**r**,n} with generating function ∑_{**r**,n} a_{**r**,n}**x**^{**r**}tⁿ.

• Consider nearest-neighbour walks in \mathbb{Z}^d , defined by a set $S \subseteq \{-1, 0, 1\}^d \setminus \{\mathbf{0}\}$ of allowed steps. Define

 $S_j = \{i: (i,j) \in S\} \qquad \text{for each } j \in \{-1,0,1\}.$

- We can consider unrestricted walks, walks restricted to a halfspace, and walks restricted to the positive orthant. The last is the most challenging, and we concentrate on it today.
- We can keep track of the endpoint, and also the length. This gives a d + 1-variate sequence a_{**r**,n} with generating function ∑_{**r**,n} a_{**r**,n}**x**^{**r**}tⁿ.
- Summing over **r** gives a univariate series $\sum_n f(n)t^n$.

• Consider nearest-neighbour walks in \mathbb{Z}^d , defined by a set $S \subseteq \{-1, 0, 1\}^d \setminus \{\mathbf{0}\}$ of allowed steps. Define

 $S_j = \{i: (i,j) \in S\} \qquad \text{for each } j \in \{-1,0,1\}.$

- We can consider unrestricted walks, walks restricted to a halfspace, and walks restricted to the positive orthant. The last is the most challenging, and we concentrate on it today.
- ► We can keep track of the endpoint, and also the length. This gives a d + 1-variate sequence a_{**r**,n} with generating function ∑_{**r**,n} a_{**r**,n} **x**^{**r**}tⁿ.
- Summing over **r** gives a univariate series $\sum_n f(n)t^n$.
- We seek in particular the asymptotics of f(n).

Bousquet-Mélou & Mishna (2010) showed that for d = 2 there are 79 inequivalent nontrivial cases.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Bousquet-Mélou & Mishna (2010) showed that for d = 2 there are 79 inequivalent nontrivial cases.
- ▶ They introduced the symmetry group *G*(*S*) and showed that this is finite in exactly 23 cases.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Bousquet-Mélou & Mishna (2010) showed that for d = 2 there are 79 inequivalent nontrivial cases.
- ► They introduced the symmetry group *G*(*S*) and showed that this is finite in exactly 23 cases.
- They used this to show for 22 cases that F is D-finite. For 19 of these, used the orbit sum method and for 3 more, the half orbit sum method.

▶ Bostan & Kauers (2009): for d = 2, conjectured asymptotics for f(n) in the 23 cases.

▶ Bostan & Kauers (2009): for d = 2, conjectured asymptotics for f(n) in the 23 cases.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▶ Bostan & Kauers (2010): for d = 2, explicitly showed the 23rd case (Gessel walks) has algebraic f.

- ▶ Bostan & Kauers (2009): for d = 2, conjectured asymptotics for f(n) in the 23 cases.
- ▶ Bostan & Kauers (2010): for d = 2, explicitly showed the 23rd case (Gessel walks) has algebraic f.
- ▶ Melczer & Mishna (2014): for arbitrary *d*, *G* maximal, derived asymptotics for *f*(*n*).

- ▶ Bostan & Kauers (2009): for d = 2, conjectured asymptotics for f(n) in the 23 cases.
- ▶ Bostan & Kauers (2010): for *d* = 2, explicitly showed the 23rd case (Gessel walks) has algebraic *f*.
- ▶ Melczer & Mishna (2014): for arbitrary *d*, *G* maximal, derived asymptotics for *f*(*n*).

 Bostan, Chyzak, van Hoeij, Kauers & Pech: for d = 2, expressed f in terms of hypergeometric integrals in the 23 cases. We use their numbering of the cases.

- ▶ Bostan & Kauers (2009): for d = 2, conjectured asymptotics for f(n) in the 23 cases.
- ▶ Bostan & Kauers (2010): for d = 2, explicitly showed the 23rd case (Gessel walks) has algebraic f.
- ▶ Melczer & Mishna (2014): for arbitrary *d*, *G* maximal, derived asymptotics for *f*(*n*).
- Bostan, Chyzak, van Hoeij, Kauers & Pech: for d = 2, expressed f in terms of hypergeometric integrals in the 23 cases. We use their numbering of the cases.
- ▶ Open: proof of asymptotics of f(n) for cases 5–16. We solve that here.

▶ Robin Pemantle and I derived general formulae for asymptotics of coefficients of rational functions F = G/H in dimension d (see the book).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ▶ Robin Pemantle and I derived general formulae for asymptotics of coefficients of rational functions F = G/H in dimension d (see the book).
- Analysis is based on the geometry of the singular variety (zero-set of H) near contributing critical points z_{*} depending on the direction r.

- ▶ Robin Pemantle and I derived general formulae for asymptotics of coefficients of rational functions F = G/H in dimension d (see the book).
- Analysis is based on the geometry of the singular variety (zero-set of H) near contributing critical points z_{*} depending on the direction r.
- The ultimate justification involves Morse theory, but this can be mostly ignored in the aperiodic combinatorial case.

- ▶ Robin Pemantle and I derived general formulae for asymptotics of coefficients of rational functions F = G/H in dimension d (see the book).
- Analysis is based on the geometry of the singular variety (zero-set of H) near contributing critical points z_{*} depending on the direction r.
- The ultimate justification involves Morse theory, but this can be mostly ignored in the aperiodic combinatorial case.
- ► We deal in particular with multiple points (locally a transverse intersection of k smooth factors). If 1 ≤ k ≤ d, formulae are of the form

$$a_{\mathbf{r}} \sim \mathbf{z}_* \mathbf{\bar{r}} \sum_l b_l ||\mathbf{r}||^{-(d-k)/2-l}.$$

Diagonals

The orbit sum approach yields F as the positive part of a rational series.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Diagonals

- The orbit sum approach yields F as the positive part of a rational series.
- ► This is the leading diagonal of a closely related series *F*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Diagonals

- The orbit sum approach yields F as the positive part of a rational series.
- ► This is the leading diagonal of a closely related series *F*.
- The GF for walks restricted to the quarter plane has the form

$$f = \operatorname{diag} \frac{xyP(x^{-1}, y^{-1})}{(1 - txyS(x^{-1}, y^{-1}))(1 - x)(1 - y)}$$

where

$$\begin{split} S(x,y) &= \sum_{(i,j)\in S} x^i y^j \\ P(x,y) &= \sum_{\sigma\in G} \operatorname{sign}(\sigma) \sigma(xy). \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Singularities

► The factor H₁ := 1 - txyS(x⁻¹, y⁻¹) is a polynomial. Its gradient simplifies to (-1 + ty∂S/∂x, -1 + tx∂S/∂y, -1) and thus this factor is everywhere smooth.

Singularities

- ► The factor H₁ := 1 txyS(x⁻¹, y⁻¹) is a polynomial. Its gradient simplifies to (-1 + ty∂S/∂x, -1 + tx∂S/∂y, -1) and thus this factor is everywhere smooth.
- ► Other singularities come from factors of (1 x), (1 y) and possibly from clearing denominators of xyP(x⁻¹, y⁻¹).

Singularities

- ► The factor H₁ := 1 txyS(x⁻¹, y⁻¹) is a polynomial. Its gradient simplifies to (-1 + ty∂S/∂x, -1 + tx∂S/∂y, -1) and thus this factor is everywhere smooth.
- ► Other singularities come from factors of (1 x), (1 y) and possibly from clearing denominators of xyP(x⁻¹, y⁻¹).
- When F is combinatorial, there is a dominant singularity for direction 1 lying in the positive orthant.

Critical points

▶ H_1 contains a smooth critical point for the direction (1, 1, 1) if and only if $\nabla S(x^{-1}, y^{-1}) = 0$.

Critical points

- ▶ H_1 contains a smooth critical point for the direction (1, 1, 1) if and only if $\nabla S(x^{-1}, y^{-1}) = 0$.
- This occurs if and only if

$$\sum_{i=-1,j} y^j - x^{-2} \sum_{i=1,j} y^j = 0$$
$$\sum_{i\in S_{-1}} x^i - y^{-2} \sum_{i\in S_1} x^i = 0$$

Critical points

- ▶ H_1 contains a smooth critical point for the direction (1, 1, 1) if and only if $\nabla S(x^{-1}, y^{-1}) = 0$.
- This occurs if and only if

$$\sum_{i=-1,j} y^j - x^{-2} \sum_{i=1,j} y^j = 0$$
$$\sum_{i\in S_{-1}} x^i - y^{-2} \sum_{i\in S_1} x^i = 0.$$

• If S has a vertical axis of symmetry, then $(x^2 - 1) \sum_j y^j = 0$.

(日) (日) (日) (日) (日) (日) (日) (日)

Structure of G

Write

$$S(x,y) = y^{-1}A_{-1}(x) + A_0(x) + yA_1(x)$$

= $x^{-1}B_{-1}(y) + B_0(y) + xB_1(y)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Structure of G

Write

$$S(x,y) = y^{-1}A_{-1}(x) + A_0(x) + yA_1(x)$$

= $x^{-1}B_{-1}(y) + B_0(y) + xB_1(y)$.

► G is generated by the involutions (considered as algebra homomorphisms)

$$(x,y) \mapsto \left(x^{-1}\frac{B_{-1}(y)}{B_{1}(y)}, y\right)$$
$$(x,y) \mapsto \left(x, y^{-1}\frac{A_{-1}(x)}{A_{1}(x)}\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Structure of G

Write

$$S(x,y) = y^{-1}A_{-1}(x) + A_0(x) + yA_1(x)$$

= $x^{-1}B_{-1}(y) + B_0(y) + xB_1(y).$

 G is generated by the involutions (considered as algebra homomorphisms)

$$\begin{split} (x,y) &\mapsto \left(x^{-1}\frac{B_{-1}(y)}{B_{1}(y)}, y\right) \\ (x,y) &\mapsto \left(x, y^{-1}\frac{A_{-1}(x)}{A_{1}(x)}\right) \end{split}$$

▶ If S has vertical symmetry then $B_1 = B_{-1}$, these maps commute, and G has order 4.

► This covers Cases 1–16. The possible denominators from P are x² + 1, x² + x + 1. Neither can contribute because the problem is combinatorial and aperiodic. The dominant point has x = 1.

- ► This covers Cases 1–16. The possible denominators from P are x² + 1, x² + x + 1. Neither can contribute because the problem is combinatorial and aperiodic. The dominant point has x = 1.
- ► The numerator vanishes iff |S₁| = |S₋₁|. In that case cancellation occurs and k = 1. This solves Cases 1–4: leading term C|S|ⁿn^{-1/2}.

- ► This covers Cases 1–16. The possible denominators from P are x² + 1, x² + x + 1. Neither can contribute because the problem is combinatorial and aperiodic. The dominant point has x = 1.
- ► The numerator vanishes iff |S₁| = |S₋₁|. In that case cancellation occurs and k = 1. This solves Cases 1–4: leading term C|S|ⁿn^{-1/2}.
- ▶ Otherwise, there is a double point (k = 2) at (1,1, |S|). Its contribution is nonzero if and only if the numerator does not vanish and the direction (1,1,1) lies in a certain cone.

- ► This covers Cases 1–16. The possible denominators from P are x² + 1, x² + x + 1. Neither can contribute because the problem is combinatorial and aperiodic. The dominant point has x = 1.
- ► The numerator vanishes iff |S₁| = |S₋₁|. In that case cancellation occurs and k = 1. This solves Cases 1–4: leading term C|S|ⁿn^{-1/2}.
- ▶ Otherwise, there is a double point (k = 2) at (1,1, |S|). Its contribution is nonzero if and only if the numerator does not vanish and the direction (1,1,1) lies in a certain cone.
- ▶ The direction lies in the cone iff $\partial S / \partial x(1,1) \ge 0$, iff $|S_1| \ge |S_{-1}|$ (happens in Cases 1–10).

- ► This covers Cases 1–16. The possible denominators from P are x² + 1, x² + x + 1. Neither can contribute because the problem is combinatorial and aperiodic. The dominant point has x = 1.
- ► The numerator vanishes iff |S₁| = |S₋₁|. In that case cancellation occurs and k = 1. This solves Cases 1–4: leading term C|S|ⁿn^{-1/2}.
- ▶ Otherwise, there is a double point (k = 2) at (1,1, |S|). Its contribution is nonzero if and only if the numerator does not vanish and the direction (1,1,1) lies in a certain cone.

- ▶ The direction lies in the cone iff $\partial S / \partial x(1,1) \ge 0$, iff $|S_1| \ge |S_{-1}|$ (happens in Cases 1–10).
- ▶ Thus for Cases 5–10 we have leading term $C|S|^n n^{-1}$.

▶ There is a smooth critical point where $y^2 = |S_1|/|S_{-1}|$, so y is a quadratic irrational at worst.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ► There is a smooth critical point where y² = |S₁|/|S₋₁|, so y is a quadratic irrational at worst.
- The exponential rate is

$$S(1, y^{-1}) = |S_0| + y^{-1}|S_1| + y|S_{-1}| = |S_0| + 2\sqrt{|S_1||S_{-1}|}.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- ► There is a smooth critical point where y² = |S₁|/|S₋₁|, so y is a quadratic irrational at worst.
- The exponential rate is

$$S(1, y^{-1}) = |S_0| + y^{-1}|S_1| + y|S_{-1}| = |S_0| + 2\sqrt{|S_1||S_{-1}|}.$$

► The arithmetic-geometric mean inequality shows that this is smaller than |S|, with equality if and only if |S₁| = |S₋₁|.

- ► There is a smooth critical point where y² = |S₁|/|S₋₁|, so y is a quadratic irrational at worst.
- The exponential rate is

$$S(1, y^{-1}) = |S_0| + y^{-1}|S_1| + y|S_{-1}| = |S_0| + 2\sqrt{|S_1||S_{-1}|}.$$

- ► The arithmetic-geometric mean inequality shows that this is smaller than |S|, with equality if and only if |S₁| = |S₋₁|.
- This holds in Cases 11–16.

Normally the polynomial correction starts with n⁻¹, since (3 − 1)/2 = 1. The *l*th term is of order n^{-l}.

- ロ ト - 4 回 ト - 4 □ - 4

- ► Normally the polynomial correction starts with n⁻¹, since (3-1)/2 = 1. The *l*th term is of order n^{-l}.
- If the numerator vanishes at the dominant point, the l = 1 term vanishes.

- ► Normally the polynomial correction starts with n⁻¹, since (3-1)/2 = 1. The *l*th term is of order n^{-l}.
- ► If the numerator vanishes at the dominant point, the l = 1 term vanishes.
- ▶ This happens in all cases 11-16. The numerator simplifies at the smooth point to $(1 + x)(1 y^2|S_{-1}|/|S_1|$, which is zero from the critical point equation for y.

- ► Normally the polynomial correction starts with n⁻¹, since (3-1)/2 = 1. The *l*th term is of order n^{-l}.
- If the numerator vanishes at the dominant point, the l = 1 term vanishes.
- ▶ This happens in all cases 11-16. The numerator simplifies at the smooth point to $(1 + x)(1 y^2|S_{-1}|/|S_1|$, which is zero from the critical point equation for y.
- The leading term asymptotic is $C(|S_0| + 2\sqrt{|S_1||S_{-1}|})^n n^{-2}$.

The key quantity for walks with vertical symmetry is the difference between the upward and downward steps.

- The key quantity for walks with vertical symmetry is the difference between the upward and downward steps.
- ► If this is positive, there are more possible walks that don't cross the boundary, so the quarter plane restriction is encountered less often. Asymptotics come from the point (1,1,1/|S|).

- The key quantity for walks with vertical symmetry is the difference between the upward and downward steps.
- ► If this is positive, there are more possible walks that don't cross the boundary, so the quarter plane restriction is encountered less often. Asymptotics come from the point (1,1,1/|S|).
- If negative, asymptotics come from the highest smooth point.

- The key quantity for walks with vertical symmetry is the difference between the upward and downward steps.
- ► If this is positive, there are more possible walks that don't cross the boundary, so the quarter plane restriction is encountered less often. Asymptotics come from the point (1,1,1/|S|).
- If negative, asymptotics come from the highest smooth point.

This explains Cases 1-16 in a unified way.

Other cases

 Cases 17–19 also follow as above, with slightly different formulae and more work.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Other cases

- Cases 17–19 also follow as above, with slightly different formulae and more work.
- Cases 20–23 are harder. We don't have a nice diagonal expression, and the conjectured asymptotics show that analysis will be trickier.

Possible future work

 Higher dimensions: d = 3 has been studied empirically by Bostan, Bousquet-Mélou, Kauers & Melczer. The orbit sum method appears to work rather rarely, however.

Possible future work

- Higher dimensions: d = 3 has been studied empirically by Bostan, Bousquet-Mélou, Kauers & Melczer. The orbit sum method appears to work rather rarely, however.
- Higher dimensions: weaken the condition of MM2014, but keep it nice enough that results for general dimension can be derived.

Appendix: why not use the diagonal method?

▶ For general $a_{pn,qn,rn}$ we could try to compute the diagonal GF $F_{pqr}(z) := \sum_{n \ge 0} a_{pn,qn,rn} z^n$ using the diagonal method as in Stanley.

Appendix: why not use the diagonal method?

For general a_{pn,qn,rn} we could try to compute the diagonal GF F_{pqr}(z) := ∑_{n≥0} a_{pn,qn,rn}zⁿ using the diagonal method as in Stanley.

 However the diagonal is *D*-finite and there are major computational challenges in computing asymptotics.

Appendix: why not use the diagonal method?

- For general a_{pn,qn,rn} we could try to compute the diagonal GF F_{pqr}(z) := ∑_{n≥0} a_{pn,qn,rn}zⁿ using the diagonal method as in Stanley.
- However the diagonal is *D*-finite and there are major computational challenges in computing asymptotics.
- See Raichev & Wilson (2007), "A new diagonal method ...".