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I L. Hörmander, The Analysis of Linear Partial Differential
Operators (Ch 7), Springer, 1983.



Higher order asymptotics from multivariate generating functions

Preliminaries

Notation

I Boldface denotes a multi-index: z = (z1, . . . , zd),
r = (r1, . . . , rd), zr = zr11 . . . zrdd , dz = dz1 ∧ dz2 ∧ · · · ∧ dzd.

I A (multivariate) sequence is a function a : Nd → C for some
fixed d. Usually write ar instead of a(r).

I The generating function of the sequence is the formal power
series F (z) =

∑
r arz

r.

I If the series converges in a neighbourhood of 0 ∈ Cd, then F
defines an analytic function there.
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Standing assumptions

To avoid too many special cases, we restrict until further notice to
the following, most common, case:

I ar ≥ 0 (the combinatorial case);

I the sequence {ar} is aperiodic;

I the directions r := r/|r| of interest for which we seek
asymptotics of ar are generic, so nothing changes qualitatively
in a small neighbourhood;

I F = G/H with G,H entire functions but F is not itself
entire. Key examples: rational function that is not a
polynomial.
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Univariate review

d = 1: analysis is easy

I Consider the Cauchy integral representation

ar =

∫
C
ω :=

1

2πi

∫
C
z−rF (z)

dz

z

where C is a closed contour (a chain) in C enclosing 0 and no
other pole of the integrand.

I Cauchy integral theorem shows that the contour can be
replaced by a larger circle C ′ containing all poles c of the
integrand, plus a small circle around each pole. Each small
integral is equal to the residue at the appropriate pole.

I Thus ar =
∫
C′ ω −

∑
c 6=0 Res(ω, c) and the integral is

exponentially smaller than the residues.
I Note that if c 6= 0, then Res(ω, c) = c−r Res(F, c) and so

asymptotics are dominated by the pole with smallest modulus.
This is positive real (Vivanti-Pringsheim).
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Univariate review

Example: derangements

I Consider F (z) = e−z/(1− z), the GF for derangements.
There is a single simple pole at z = 1.

I Using a circle of radius 1 + ε we obtain, by the residue
theorem,

ar =
1

2πi

∫
C1+ε

z−r−1F (z) dz − Res(z−r−1F (z); z = 1).

I The integral is O((1 + ε)−r) while the residue equals −e−1.

I Thus [zr]F (z) ∼ e−1 as r →∞.

I Since there are no more poles, we can push C to ∞ in this
case, so the error in the approximation decays faster than any
exponential.
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Multivariate asymptotics — mainstream view

Amazingly little is known even about rational F in 2 variables. For
example:

I (Bender 1974) “Practically nothing is known about
asymptotics for recursions in two variables even when a GF is
available. Techniques for obtaining asymptotics from bivariate
GFs would be quite useful.”

I (Odlyzko 1995) “A major difficulty in estimating the
coefficients of mvGFs is that the geometry of the problem is
far more difficult. . . . Even rational multivariate functions are
not easy to deal with.”

I (Flajolet/Sedgewick 2009) “Roughly, we regard here a
bivariate GF as a collection of univariate GFs . . . .”
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The mvGF (a.k.a. Pemantle) project

I Over a decade ago, Robin Pemantle (U. Penn.) began a
major project on mvGF coefficient extraction, which I joined
early on.

I Goal 1: improve over all previous work in generality, ease of
use, symmetry, computational effectiveness, uniformity of
asymptotics. Create a theory for d > 1.

I Goal 2: establish mvGFs as an area worth studying in its own
right, a meeting place for many different areas, a common
language.

I Other collaborators: Yuliy Baryshnikov, Wil Brady, Andrew
Bressler, Timothy DeVries, Manuel Lladser, Alexander
Raichev, Mark Ward, . . . .
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Cauchy integral representation

I Let U be the open polydisc of convergence, ∂U its boundary,
C a product of circles centred at 0, inside U. Then

ar =
1

(2πi)d

∫
C
z−rF (z)

dz

z
.

I The integrand usually oscillates wildly leading to huge
cancellation, so estimates are hard to obtain.

I One idea: the diagonal method first finds the 1-D GF in a
fixed direction. This fails to work well (Raichev-Wilson 2007).

I Good general idea: saddle point method: using analyticity, we
deform the contour C to minimize the maximum modulus of
the integrand. Usually we minimize only the factor |z|−|r|.

I The other main idea is residue theory. The Leray residue
formula and reduces dimension of the integral by 1; we still
need to integrate the residue form.
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mvGF project overview

High level outline of the computation

I Use homology to rewrite the chain of integration in terms of
basic cycles. Determine which ones give dominant
contributions.

I Rewrite the Cauchy integral in terms of a Fourier-Laplace
integral amenable to the saddle point method, by (local)
substitution z = exp(t).

I If the local geometry is nice, we can use residue computations
to reduce dimension by 1. Then we can approximate the
integral to get a complete asymptotic expansion.

I Otherwise: try resolution of singularities or other approach.

I The analysis depends on the direction r as a parameter. If
done right the dependence is as uniform as possible.
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High level outline of results
I Asymptotics in each fixed direction r are determined by the

geometry of the singular variety V (given by H = 0) near a
contributing point z∗(r).

I A necessary condition: z∗(r) ∈ crit(r) where the finite subset
crit(r) is geometrically well defined, and algorithmically
computable by symbolic algebra.

I There is an asymptotic expansion for ar, in terms of
derivatives of G and H.

I When z∗(r) is a smooth point (simple pole) of V,

ar ∼ z∗(r)−r
∑
q≥0

bq(z
∗)|r|−(d−1)/2−q

and this is uniform in sufficiently small cones of directions.
Higher order poles have similar (sometimes nicer) formulae.

I Leading term can be expressed in terms of outward normal to,
and Gaussian curvature of, V in appropriate coordinates.
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and this is uniform in sufficiently small cones of directions.
Higher order poles have similar (sometimes nicer) formulae.

I Leading term can be expressed in terms of outward normal to,
and Gaussian curvature of, V in appropriate coordinates.
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d = 2, smooth point, explicit leading term
I Suppose that F = G/H has a simple pole at P = (z∗, w∗)

and F (z, w) is otherwise analytic for |z| ≤ |z∗|, |w| ≤ |w∗|.
Define

Q(z, w) = −A2B −AB2 −A2z2Hzz −B2w2Hww +ABHzw

where A = wHw, B = zHz, all computed at P . Then when
s→∞ with r/s = B/A,

ars = (z∗)−r(w∗)−s

[
G(z∗, w∗)√

2π

√
−A

sQ(z∗, w∗)
+O((r + s)−3/2)

]
.

The apparent lack of symmetry is illusory, since A/s = B/r.

I This simplest case already covers Pascal, Catalan, Motzkin,
Schröder, . . . triangles, generalized Dyck paths, ordered
forests, sums of IID random variables, Lagrange inversion,
transfer matrix method, . . . .
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Example: Delannoy numbers
I Consider walks in Z2 from (0, 0), steps in (1, 0), (0, 1), (1, 1).

Here F (z, w) = (1− z − w − zw)−1.

I Note V is globally smooth and crit turns out to be given by
1− z − w − zw = 0, z(1 + w)s = w(1 + z)r. There is a
unique solution for each r, s.

I Solving, and using the smooth point formula above we obtain
(uniformly for r/s, s/r away from 0)

ars ∼
[

∆− s
r

]−r [∆− r
s

]−s√ rs

2π∆(r + s−∆)2

where ∆ =
√
r2 + s2.

I Extracting the diagonal (“central Delannoy numbers”) is now
trivial:

arr ∼ (3 + 2
√

2)r
1

4
√

2(3− 2
√

2)
r−1/2.
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Extensions, jargon, applications

Check out the following in the references — no time here!

I higher order poles (“multiple points”, e.g. queueing networks);

I other nonsmooth points (“cone points”, e.g. tilings);

I non-generic directions (“Airy phenomena”, e.g. maps);

I periodicity (“torality”, e.g. quantum random walks);

I (Gaussian) limit laws follow directly from the analysis;



Higher order asymptotics from multivariate generating functions

Computing the expansions effectively

What sort of asymptotic expansion do we want?

I The general shape only?

I An explicit coordinate-free formula in terms of geometric
data?

I An explicit expression in coordinates?

I An efficient algorithm for computing
symbolically/numerically?

I Higher order terms are useful for many reasons (e.g. better
approximations for smaller indices, cancellation of lower
terms).

I There are many “formulae” in the literature for asymptotic
expansions, but higher order terms are universally
acknowledged to be hard to compute.
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Explicit integral: Delannoy numbers

I The integral of the residue turns out to be∫ ε

−ε
exp

[
irθ − s log

(
1 + z∗eiθ

1 + z∗
1− z∗

1− z∗eiθ

)]
1

1− z∗eiθ
dθ.

I Note that the argument g(θ) of the exponential has Maclaurin
expansion

i

(
r(z∗)2 + 2sz∗ − r

(z∗)2 − 1

)
θ +

sz∗(1 + (z∗)2)

(1− (z∗)2)2)
θ2 + . . .

I Recall that crit((r, s)) is defined by
1− z − w − zw = 0, s(1 + w)z = r(1 + z)w. Eliminating w
yields rz2 + 2sz − r = 0.

I Thus g(0) = 0, and g′(0) = 0 because (z∗, w∗) is a critical
point for direction (r, s).
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Fourier-Laplace integrals

I The above ideas reduce the problem to large-λ analysis of
integrals of the form

I(λ) =

∫
D
e−λg(θ)u(θ) dθ

where:

I 0 ∈ D, g(0) = 0 = g′(0);
I Re g ≥ 0; the phase g and amplitude u are analytic;
I D is a product of simplices, tori, boxes in Cm;
I typically det g′′(0) 6= 0 and there are no other stationary

points of the phase on D.

I Difficulties in analysis: interplay between exponential and
oscillatory decay, nonsmooth boundary of simplex.
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Low-dimensional examples of F-L integrals
I A typical smooth point example looks like∫ 1

−1
e−λ(1+i)x

2
dx.

Isolated nondegenerate critical point, exponential decay.

I The simplest double point example looks like∫ 1

−1

∫ 1

0
e−λ(x

2+2ixy) dy dx.

Note Re g = 0 on x = 0, so rely on oscillation for smallness.
I Multiple point with n = 2, d = 1 gives an integral like∫ 1

−1

∫ 1

0

∫ x

−x
e−λ(z

2+2izy) dy dx dz.

Simplex corners now intrude, continuum of critical points.
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Asymptotics from F-L integrals
I This is a classical topic with many applications in physics,

treated by many authors. However many of our applications
to generating function asymptotics do not fit into the standard
framework. In some cases, we need to extend what is known.

I Pemantle-Wilson 2009 does this for the simplest cases that we
need, but more remains to be done.

I Assume that there is a single stationary point that is
quadratically nondegenerate (this holds in our applications to
mvGFs, under our standing assumptions). The integral then
has an asymptotic expansion of the form

(det 2πg′′(0))−1/2
∞∑
q=0

bqλ
−d/2−q .

I If u(0) 6= 0 then the leading term is given by b0 = u(0). This
is fine, but how to compute the higher order terms?
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Explicit series: Hörmander’s formula

We want the coefficents bq from above. Define

Lq(u, g) :=

2q∑
l=0

Hq+l(ugl)(0)

(−1)q2q+ll!(q + l)!
,

g(θ) = g(θ)− 1

2
θg′′(0)θT

H = −
∑
a,b

(g′′(0)−1)a,b∂a∂b.

Then bq = Lq(u, g).
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Consequence of Hörmander for our mvGF application

I

ar ∼ z∗−r
[

(2π)(n−d)/2(detM(z∗))−1/2
∑
0≤q

cqr
(n−d)/2−q
d

]
,

where M is a certain nonsingular matrix

cq =
∑

0≤j≤min{n−1,q}
max{0,q−n}≤k≤q

j+k≤q

Lk(ũj , g̃)

(
n− 1

j

)
(−1)q−j−k

[
n− j

n+ k − q

]

and

I n is the order of the pole;
I
[
a
b

]
denotes the unsigned Stirling number of the first kind;

I the functions ũj involve derivatives up to order j of G;
I g̃ gives a local parametrization of V eliminating zd .
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I the functions ũj involve derivatives up to order j of G;

I g̃ gives a local parametrization of V eliminating zd .



Higher order asymptotics from multivariate generating functions

Computing the expansions effectively

Consequence of Hörmander for our mvGF application

I

ar ∼ z∗−r
[

(2π)(n−d)/2(detM(z∗))−1/2
∑
0≤q

cqr
(n−d)/2−q
d

]
,

where M is a certain nonsingular matrix

cq =
∑

0≤j≤min{n−1,q}
max{0,q−n}≤k≤q

j+k≤q
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Computing the expansions effectively

Delannoy example: next term in the expansion

I In the smooth point case the formulae simplify substantially.
The machinery gives (symbolic) asymptotic expansions in any
direction: we show a typical numerical consequence.

I

a2n,3n =
(
c−31 c−22

)n (
b0n
−1/2 + b1n

−3/2 +O
(
n−5/2

))
as n→∞, where

c−31 c−22 ≈ 71.16220050

b0 =
133/4

√
3

156
√
π

(5 +
√

13) ≈ 0.36906

b1 = −(5/1898208)133/4
√

3(79
√

13 + 767)/
√
π ≈ −0.018536
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Computing the expansions effectively

Delannoy example: improved numerics

Here E1, E2 denote the relative error when using the 1- and 2-term
approximations A1, A2.

n 1 2 4 8 16

a2n,3n 25 1289 4.673·106 8.528·1013 3.978·1028

A1 26.263 1321.542 4.732·106 8.581·1013 3.990·1028

A2 24.944 1288.355 4.673·106 8.527·1013 3.978·1028

E1 -5% -2.5% -1.3% -0.6% -0.3%
E2 0.2% 0.05% 0.01% 0.003% 0.0007%
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Computing the expansions effectively

Example: cancellation in variance computation
I Consider the (d+ 1)-variate function

W (x1, . . . , xd, y) =
A(x)

1− yB(x)
, where

I

A(x) =

1−
d∑
j=1

xj
xj + 1

−1 ,
B(x) = 1− (1− e1(x))A(x),

e1(x) =
d∑
i=j

xj .

I W counts words over a d-ary alphabet X, where xj marks
occurrences of letter j of X and y marks snaps (occurrences
of nonoverlapping pairs of duplicate letters).
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Example: variance computation II
I The coefficient [xn1 . . . x

n
d , y

s]W (x, y) equals the number of
words with n occurrences of each letter and s snaps.

I Let ψn be the random variable that counts snaps conditional
on there being n occurrences of each letter. As usual we
compute moments of ψn by taking y-derivatives of W and
evaluating at y = 1. We need diagonals of the resulting GFs.

I However the first order terms cancel out in the computation
of the variance. So we require at least a 2-term expansion for
the mean and second moment.

I The answer is (for d = 3):

E[ψn] =
3

4
n− 15

32
+O(

1

n
)

E[ψ2
n] =

9

16
n2 − 27

64
n+O(1)

V [ψn] =
9

32
n+O(1)
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Computing the expansions effectively

Application: algebraic functions

I Many naturally occurring GFs are algebraic but not rational.

I For example, diagonals of rational functions (see Stanley’s
book).

I A little-known result by Safonov (2000) shows the converse.
Every algebraic function in d variables is the “generalized
diagonal” of a rational function in d+ 1 variables. When
d = 1 this is the usual leading diagonal.

I The construction is algorithmic but quite involved and uses a
sequence of blowups to resolve singularities.
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Example: Narayana numbers
I The GF for the Narayana numbers (enumerating Dyck paths

by length and number of peaks) is

F (z, w) =
1

2

(
1 + z(w − 1)−

√
1− 2z(w + 1) + z2(w − 1)2

)
.

I Applying Safonov’s procedure we see that

[znwk]F (z, w) = [tnznwk]
t2(z(w − 1) + 2) + t

(z(w − 1)− 1)t− zw + 1
.

I Interestingly the whole process commutes with the
specialization w = 1, which gives an analogous result for the
(shifted) Catalan numbers Cn, agreeing with what is known
from other methods:

Cn = 4n
[

1

4
√
π
n−3/2 +

3

32
√
π
n−5/2 +O(n−7/2)

]
.
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Higher order asymptotics from multivariate generating functions

Technical issues, related and future work, overflow

Difficulties with Safonov method

I The leading term in the asymptotics of the lifted GF is usually
zero, so higher order terms are needed.

I Even for combinatorial F the lifted GF need not be
combinatorial. Finding contributing points is much more
difficult (topology, not convex geometry).

I Contributing points can lie at infinity (more topology!)

I Plenty of stimulus for further research, even if Safonov proves
to be less effective than other approaches (such as directly
resolving the Cauchy integral).
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Technical issues, related and future work, overflow

Complexity of finding higher order terms

I There are many “formulae” for higher order terms in the
literature but Hörmander’s is the only useful one we have
found.

I Of course we do not require a formula, only an algorithm.
The coefficients are given implicitly by the Morse lemma’s
change of variables and can be found by solving a triangular
system of equations.

I The number of (partial) derivatives needed to evaluate the
nth term is likely superpolynomial in the number of terms.
Using Hörmander we need to go to order 2n (or 6n− 6 if
completely naive), and the partials are indexed by partitions.

I However the error reduces quickly with the number of terms,
so not many terms are needed in practice it seems.
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Open problems

I Find and classify contributing singularities algorithmically.

I Compute expansions controlled by nonsmooth points.

I Patch together asymptotics in different regimes: uniformity,
phase transitions.
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