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The diagonal method

The general message of this talk

I At AofA2007 in Juan-les-Pins, Alex Raichev’s talk explained
how to do asymptotic diagonal extraction from multivariate
generating functions.

I Helmut Prodinger asked “When can we get the Maple
package?”

I No Maple package, but there is now a reasonable
implementation in Sage (available at Alex’s website). Needs
some algorithmic speedups. Any volunteers?

I In 2012, I saw that the word has not yet spread far enough.
Multivariate methods are more general, conceptually simpler,
and, I claim, computationally superior.
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The diagonal method

A simple motivating problem

I What is the probability πn that two uniformly and
independently chosen compositions of the nonnegative integer
n have the same number of parts?

I Obviously, this reduces to a counting problem. Let an,k be the
number of compositions of n having k parts. It suffices to
compute

∑
k a

2
nk.

I The answer can be given explicitly in this case:∑
k

(
n−1
k

)2
=
(
2n−2
n−1

)
. Thus

πn =

(
2n−2
n−1

)(∑
k

(
n−1
k

))2 ∼ 1√
πn

.

I Suppose we replace “two” by d, N by other combinatorial
classes, allow different n for different compositions,. . . ?
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The diagonal method

Recent work

I Bóna & Knopfmacher 2010: consider compositions with parts
in fixed set S ⊆ N. Explicit formulae in some cases.

I Banderier & Hitczenko 2012: generalize from 2 to d
compositions, different restriction S for each one. Some
explicit formulae and asymptotics.
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The diagonal method

Generalizing the problem

I Generalize restricted composition of integers to sequence
construction applied to arbitrary combinatorial classes Si.

I Allow different sums (n1, . . . , nd) for the d compositions.

I Use the symbolic method. Let F (x,y) =
∑
anx

nyk be the
2d-variate generating function, where x marks size and y
marks number of components. Here F (x,y) factors as∏d
i=1 Fi(xi, yi).

I The number of d-tuples of objects with the same number of
components is [xn] diagy F (x,1). In particular for the
simplest case where all ni = n,

[xn1] diagy F (x, 1) =
∑
k≥0

(ank)
d =: bn.
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The diagonal method

Aside: exact solutions

I When d = 2, we have a good chance of finding an exact
solution. For Dyck walks

∑
0≤k≤n
2|(n−k)

[
k + 1

n+ 1

(
n+ 1
n−k
2

)]2
=

1

n+ 1

(
2n

n

)
.

More generally, when (ank) is a Riordan array, namely the
case Fi(x, y) = φ(x)/(1− yv(x)), we discover new identities
of this type that are not in OEIS.

I When d ≥ 3, exact solutions are rare. For example,
bn =

∑
k

(
n
k

)3
is known not to have an algebraic generating

function.
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Solving asymptotically via the diagonal method: very hard
I The sequence (bn) satisfies a linear ODE/recurrence with

polynomial coefficients.

I Known methods (Frobenius, Birkhoff-Trjitinsky) for finding
these require finding undetermined constants somehow, and
have never been made fully algorithmic (the connection
problem).

I It seems that the work needed is enormous even for rather
modest-looking problems. For example, the defining linear

differential equation for
∑

k

(
n−k
k

)5
has order 6 with

polynomial coefficients of degree 38. Banderier and Hitczenko
report: “Current state of the art algorithms will take more
than one day for d = 6, and gigabytes of memory . . . . ”

I How to do it for general d? Also, the diagonal method does
not yield asymptotics that are uniform in the slope of the
diagonal; performance away from the main diagonal is bad.
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The probabilistic approach

I In order to solve the connection problem for general d,
Banderier & Hitczenko used the result of Bóna & Flajolet.

I Consider the random variable Xn whose PGF is∑
k anky

k/
∑

k ank, mean µn, variance σ2n. If (Xn − σn)/µn
converges to a continuous limit law with density g, then

πn1 ∼ σ−(d−1)n

∫ ∞
−∞

g(x)d dx.

I In the Gaussian case, K is explicitly computable.

I In general, such methods say nothing about higher order
terms, or when there is not a continuous limit. Still, this
approach is a useful complement to the above methods.
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I Consider the random variable Xn whose PGF is∑
k anky

k/
∑

k ank, mean µn, variance σ2n. If (Xn − σn)/µn
converges to a continuous limit law with density g, then

πn1 ∼ σ−(d−1)n

∫ ∞
−∞

g(x)d dx.

I In the Gaussian case, K is explicitly computable.

I In general, such methods say nothing about higher order
terms, or when there is not a continuous limit. Still, this
approach is a useful complement to the above methods.



The diagonal method

Aside: the value of higher order approximations

I First-order asymptotic approximations suffice for many
applications.

I Higher order approximations are useful in several contexts.

I Cancellation occurs in first order approximation (e.g.
computing variance).

I Asymptotics of algebraic functions via lifting to a rational
function in higher dimension (resolution of singularities).

I We want numerical approximations for smaller values of n.

I This topic was the subject of two papers with Alex Raichev.
For example, our 2nd order approximation for

∑n
k=0

(
n
k

)5
, even

for n = 8, has relative error only 0.5%, but 10% for 1st order.



The diagonal method

Aside: the value of higher order approximations

I First-order asymptotic approximations suffice for many
applications.

I Higher order approximations are useful in several contexts.

I Cancellation occurs in first order approximation (e.g.
computing variance).

I Asymptotics of algebraic functions via lifting to a rational
function in higher dimension (resolution of singularities).

I We want numerical approximations for smaller values of n.

I This topic was the subject of two papers with Alex Raichev.
For example, our 2nd order approximation for

∑n
k=0

(
n
k

)5
, even

for n = 8, has relative error only 0.5%, but 10% for 1st order.



The diagonal method

Aside: the value of higher order approximations

I First-order asymptotic approximations suffice for many
applications.

I Higher order approximations are useful in several contexts.
I Cancellation occurs in first order approximation (e.g.

computing variance).

I Asymptotics of algebraic functions via lifting to a rational
function in higher dimension (resolution of singularities).

I We want numerical approximations for smaller values of n.

I This topic was the subject of two papers with Alex Raichev.
For example, our 2nd order approximation for

∑n
k=0

(
n
k

)5
, even

for n = 8, has relative error only 0.5%, but 10% for 1st order.



The diagonal method

Aside: the value of higher order approximations

I First-order asymptotic approximations suffice for many
applications.

I Higher order approximations are useful in several contexts.
I Cancellation occurs in first order approximation (e.g.

computing variance).
I Asymptotics of algebraic functions via lifting to a rational

function in higher dimension (resolution of singularities).

I We want numerical approximations for smaller values of n.

I This topic was the subject of two papers with Alex Raichev.
For example, our 2nd order approximation for

∑n
k=0

(
n
k

)5
, even

for n = 8, has relative error only 0.5%, but 10% for 1st order.



The diagonal method

Aside: the value of higher order approximations

I First-order asymptotic approximations suffice for many
applications.

I Higher order approximations are useful in several contexts.
I Cancellation occurs in first order approximation (e.g.

computing variance).
I Asymptotics of algebraic functions via lifting to a rational

function in higher dimension (resolution of singularities).
I We want numerical approximations for smaller values of n.

I This topic was the subject of two papers with Alex Raichev.
For example, our 2nd order approximation for

∑n
k=0

(
n
k

)5
, even

for n = 8, has relative error only 0.5%, but 10% for 1st order.



The diagonal method

Aside: the value of higher order approximations

I First-order asymptotic approximations suffice for many
applications.

I Higher order approximations are useful in several contexts.
I Cancellation occurs in first order approximation (e.g.

computing variance).
I Asymptotics of algebraic functions via lifting to a rational

function in higher dimension (resolution of singularities).
I We want numerical approximations for smaller values of n.

I This topic was the subject of two papers with Alex Raichev.
For example, our 2nd order approximation for

∑n
k=0

(
n
k

)5
, even

for n = 8, has relative error only 0.5%, but 10% for 1st order.
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Solving asymptotically via multivariate methods

I Philosophy: if there is a multivariate GF, it is usually formally
simpler than any of its diagonals (e.g. rational versus
algebraic/D-finite). Analyse it directly!

I In the compositional problem, provided each Fi is a smooth
bivariate GF, asymptotics of F are controlled by smooth
points, fairly well understood since 2002. In particular,
supercritical Riordan arrays are almost trivial. This covers
almost every problem in the above papers and many more.

I Probabilistic limit laws, both continuous and discrete, can be
derived directly from this framework.

I As well as being conceptually simpler, these methods are, I
believe, computationally superior.

I For more, see the book (next talk!).
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General asymptotic formula (supercritical Riordan case)

I The simplest result where all Fi are equal and we seek
asymptotics on the main diagonal n = n1 is as follows.

I Suppose Fi(x, y) = φ(x)/(1− yv(x)) and φ has radius of
convergence large enough. Let c > 0 solve v(c) = 1. Then

bn1 ∼ c−dnn−d/2
∑
l

cln
−l where cl is explicitly computable.

In particular

c0 =
φ(c)d

√
dµv(c)

[
2π σ

2
v(c)
µv(c)

] d−1
2

.
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Examples

I
n∑
k=0

(
n

k

)d
∼
√

2d−1

d

2dn

(πn)
d−1
2

.

I
n∑
k=0

(
n

k

)6

∼ 64n

(
4
√

3

3(πn)
5
2

− 25
√

3

9π
5
2n

7
2

)
I

∑
k≥0

(
6n

k

)(
3n

k

)(
2n

k

)
∼
(

524288

729

)n [4
√

11

33πn
− 5446

395307

√
11

πn2

]
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The diagonal method

To be fair . . .

I Once we have the diagonal GF, bn will be computable in linear
time, while using the multivariate recurrence directly takes
time Θ(nd). Of course this ignores the time taken to find the
diagonal GF.

I Once the diagonal GF is found, the asymptotic extraction is
quicker, since it is a univariate problem. The multivariate
method typically requires solving systems of algebraic
equations.

I I suggest a serious theoretical and experimental comparison of
the performance of these methods. If done experimentally, we
need to implement the methods equally. I know which one I
would bet on to win!
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