## Why does uniform swing work so well?

Mark C. Wilson UMass Amherst

JMM IMD special session 2024-01-06

◆□▶ ◆舂▶ ◆注▶ ◆注▶ 三注.

590

- The Definitely Caring Party vies with the Radical Anti-Intellectual Party in a state election using single-member plurality voting in districts.
- How many seats will they win in parliament? District-level polls are expensive, and we usually only have state-level information.
- What might happen if we change the district boundaries or use multi-member districts? What about potential demographic changes? Such electoral design questions also call for guesswork on district-level vote changes.
- A swing model is often used to estimate district-level vote shares.

- The Definitely Caring Party vies with the Radical Anti-Intellectual Party in a state election using single-member plurality voting in districts.
- How many seats will they win in parliament? District-level polls are expensive, and we usually only have state-level information.
- What might happen if we change the district boundaries or use multi-member districts? What about potential demographic changes? Such electoral design questions also call for guesswork on district-level vote changes.
- A swing model is often used to estimate district-level vote shares.

- The Definitely Caring Party vies with the Radical Anti-Intellectual Party in a state election using single-member plurality voting in districts.
- How many seats will they win in parliament? District-level polls are expensive, and we usually only have state-level information.
- What might happen if we change the district boundaries or use multi-member districts? What about potential demographic changes? Such electoral design questions also call for guesswork on district-level vote changes.
- A swing model is often used to estimate district-level vote shares.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- The Definitely Caring Party vies with the Radical Anti-Intellectual Party in a state election using single-member plurality voting in districts.
- How many seats will they win in parliament? District-level polls are expensive, and we usually only have state-level information.
- What might happen if we change the district boundaries or use multi-member districts? What about potential demographic changes? Such electoral design questions also call for guesswork on district-level vote changes.
- A swing model is often used to estimate district-level vote shares.

- ► Assume *K* districts of equal size and two parties, *A* and *B*, contesting all districts under plurality voting.
- Unless otherwise specified we state results for party A, whose vote share in district i is denoted x<sub>i</sub>.
- The aggregate vote share is denoted  $\overline{x}$ .
- We consider two elections: E for which we know the results and E' for which we don't. We use prime to label everything:  $x'_i, \overline{x'}$ .

- ► Assume *K* districts of equal size and two parties, *A* and *B*, contesting all districts under plurality voting.
- Unless otherwise specified we state results for party A, whose vote share in district i is denoted x<sub>i</sub>.
- The aggregate vote share is denoted  $\overline{x}$ .
- We consider two elections: E for which we know the results and E' for which we don't. We use prime to label everything:  $x'_i, \overline{x'}$ .

- ► Assume *K* districts of equal size and two parties, *A* and *B*, contesting all districts under plurality voting.
- Unless otherwise specified we state results for party A, whose vote share in district i is denoted x<sub>i</sub>.
- The aggregate vote share is denoted  $\overline{x}$ .
- We consider two elections: E for which we know the results and E' for which we don't. We use prime to label everything:  $x'_i, \overline{x'}$ .

- ► Assume *K* districts of equal size and two parties, *A* and *B*, contesting all districts under plurality voting.
- Unless otherwise specified we state results for party A, whose vote share in district i is denoted x<sub>i</sub>.
- The aggregate vote share is denoted  $\overline{x}$ .
- We consider two elections: E for which we know the results and E' for which we don't. We use prime to label everything:  $x'_i, \overline{x'}$ .

- ► A model of inter-election swing is an estimate y<sub>i</sub> of each x'<sub>i</sub> (or alternatively of the district-level swing x'<sub>i</sub> - x<sub>i</sub>) given only x<sub>i</sub>, x̄' and x̄.
- The national swing  $s := \overline{x'} \overline{x}$  and this is typically the only information we have, or can estimate well, about E'.
- There are only two swing models in the political science literature and practice:
  - (uniform)  $y_i = x_i + s_i$
  - (proportional)  $y_i = x_i + s x_i / \overline{x} = x_i (1 + s / \overline{x}) = x_i \overline{x'} / \overline{x}$ .

- ► A model of inter-election swing is an estimate y<sub>i</sub> of each x'<sub>i</sub> (or alternatively of the district-level swing x'<sub>i</sub> - x<sub>i</sub>) given only x<sub>i</sub>, x̄' and x̄.
- The national swing  $s := \overline{x'} \overline{x}$  and this is typically the only information we have, or can estimate well, about E'.
- There are only two swing models in the political science literature and practice:
  - (uniform)  $y_i = x_i + s$
  - (proportional)  $y_i = x_i + s x_i / \overline{x} = x_i (1 + s / \overline{x}) = x_i \overline{x'} / \overline{x}$ .

- ► A model of inter-election swing is an estimate y<sub>i</sub> of each x'<sub>i</sub> (or alternatively of the district-level swing x'<sub>i</sub> - x<sub>i</sub>) given only x<sub>i</sub>, x̄' and x̄.
- ▶ The national swing  $s := \overline{x'} \overline{x}$  and this is typically the only information we have, or can estimate well, about E'.
- There are only two swing models in the political science literature and practice:
  - (uniform)  $y_i = x_i + s$
  - (proportional)  $y_i = x_i + sx_i/\overline{x} = x_i (1 + s/\overline{x}) = x_i \overline{x'}/\overline{x}$ .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- ► A model of inter-election swing is an estimate y<sub>i</sub> of each x'<sub>i</sub> (or alternatively of the district-level swing x'<sub>i</sub> - x<sub>i</sub>) given only x<sub>i</sub>, x̄' and x̄.
- ▶ The national swing  $s := \overline{x'} \overline{x}$  and this is typically the only information we have, or can estimate well, about E'.
- There are only two swing models in the political science literature and practice:
  - (uniform)  $y_i = x_i + s$
  - (proportional)  $y_i = x_i + sx_i/\overline{x} = x_i (1 + s/\overline{x}) = x_i \overline{x'}/\overline{x}$ .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- ► A model of inter-election swing is an estimate y<sub>i</sub> of each x'<sub>i</sub> (or alternatively of the district-level swing x'<sub>i</sub> - x<sub>i</sub>) given only x<sub>i</sub>, x̄' and x̄.
- ▶ The national swing  $s := \overline{x'} \overline{x}$  and this is typically the only information we have, or can estimate well, about E'.
- There are only two swing models in the political science literature and practice:
  - (uniform)  $y_i = x_i + s$
  - (proportional)  $y_i = x_i + sx_i/\overline{x} = x_i (1 + s/\overline{x}) = x_i \overline{x'}/\overline{x}$ .

- Bernie Grofman and I presented three obvious axioms for swing models (respect means, respect bounds, neutrality).
- Uniform swing fails one axiom, proportional fails two.
- A modification of proportional swing (piecewise model) does satisfy all three. It has the form

$$y_i = \begin{cases} s \frac{1-x_i}{1-\overline{x}} = x_i \left(\frac{1-\overline{x'}}{1-\overline{x}}\right) + \frac{\overline{x'}-\overline{x}}{1-\overline{x}} & \text{if } s \ge 0; \\ x_i \left(1 + s/\overline{x}\right) & \text{if } s < 0. \end{cases}$$

We presented a political science justification for it.

- Bernie Grofman and I presented three obvious axioms for swing models (respect means, respect bounds, neutrality).
- Uniform swing fails one axiom, proportional fails two.
- A modification of proportional swing (piecewise model) does satisfy all three. It has the form

$$y_i = \begin{cases} s \frac{1-x_i}{1-\overline{x}} = x_i \left(\frac{1-\overline{x'}}{1-\overline{x}}\right) + \frac{\overline{x'}-\overline{x}}{1-\overline{x}} & \text{if } s \ge 0;\\ x_i \left(1+s/\overline{x}\right) & \text{if } s < 0. \end{cases}$$

We presented a political science justification for it.

- Bernie Grofman and I presented three obvious axioms for swing models (respect means, respect bounds, neutrality).
- Uniform swing fails one axiom, proportional fails two.
- A modification of proportional swing (piecewise model) does satisfy all three. It has the form

$$y_i = \begin{cases} s \frac{1-x_i}{1-\overline{x}} = x_i \left(\frac{1-\overline{x'}}{1-\overline{x}}\right) + \frac{\overline{x'}-\overline{x}}{1-\overline{x}} & \text{if } s \ge 0; \\ x_i \left(1+s/\overline{x}\right) & \text{if } s < 0. \end{cases}$$

We presented a political science justification for it.

- Uniform swing is believed by political scientists to be very good for general use, whatever its theoretical defects - are they right?
- We present several more conceptual reasons against uniform swing.
- We investigate the performance of swing models on a large dataset (not ours).
- It has several decades worth of district-level US state house/senate elections, and contains over 69000 elections with no redistricting since the previous election in that unit.

- Uniform swing is believed by political scientists to be very good for general use, whatever its theoretical defects - are they right?
- We present several more conceptual reasons against uniform swing.
- We investigate the performance of swing models on a large dataset (not ours).
- It has several decades worth of district-level US state house/senate elections, and contains over 69000 elections with no redistricting since the previous election in that unit.

- Uniform swing is believed by political scientists to be very good for general use, whatever its theoretical defects - are they right?
- We present several more conceptual reasons against uniform swing.
- We investigate the performance of swing models on a large dataset (not ours).
- It has several decades worth of district-level US state house/senate elections, and contains over 69000 elections with no redistricting since the previous election in that unit.

- Uniform swing is believed by political scientists to be very good for general use, whatever its theoretical defects - are they right?
- We present several more conceptual reasons against uniform swing.
- We investigate the performance of swing models on a large dataset (not ours).
- It has several decades worth of district-level US state house/senate elections, and contains over 69000 elections with no redistricting since the previous election in that unit.

#### ► Uniform: same change in each district.

- Proportional: larger changes in already strong districts.
- Piecewise: smaller changes in already strong districts.

| District           | National | 1    | 2     | 3     | 4    | 5    |
|--------------------|----------|------|-------|-------|------|------|
| Election 1         | 0.40     | 0.40 | 0.32  | 0.48  | 0.10 | 0.70 |
| Election 2 polling | 0.60     | ?    | ?     | ?     | ?    | ?    |
| Uniform            | 0.60     | 0.60 | 0.52  | 0.68  | 0.30 | 0.90 |
| Proportional       | 0.60     | 0.60 | 0.48  | 0.72  | 0.15 | 1.05 |
| Piecewise          | 0.60     | 0.60 | 0.547 | 0.653 | 0.40 |      |

- Uniform: same change in each district.
- ▶ Proportional: larger changes in already strong districts.
- Piecewise: smaller changes in already strong districts.

| District           | National | 1    | 2     | 3     | 4    | 5    |
|--------------------|----------|------|-------|-------|------|------|
| Election 1         | 0.40     | 0.40 | 0.32  | 0.48  | 0.10 | 0.70 |
| Election 2 polling | 0.60     | ?    | ?     | ?     | ?    | ?    |
| Uniform            | 0.60     | 0.60 | 0.52  | 0.68  | 0.30 | 0.90 |
| Proportional       | 0.60     | 0.60 | 0.48  | 0.72  | 0.15 | 1.05 |
| Piecewise          | 0.60     | 0.60 | 0.547 | 0.653 | 0.40 |      |

- Uniform: same change in each district.
- Proportional: larger changes in already strong districts.
- Piecewise: smaller changes in already strong districts.

| District           | National | 1    | 2     | 3     | 4    | 5    |
|--------------------|----------|------|-------|-------|------|------|
| Election 1         | 0.40     | 0.40 | 0.32  | 0.48  | 0.10 | 0.70 |
| Election 2 polling | 0.60     | ?    | ?     | ?     | ?    | ?    |
| Uniform            | 0.60     | 0.60 | 0.52  | 0.68  | 0.30 | 0.90 |
| Proportional       | 0.60     | 0.60 | 0.48  | 0.72  | 0.15 | 1.05 |
| Piecewise          | 0.60     | 0.60 | 0.547 | 0.653 | 0.40 |      |

- Uniform: same change in each district.
- Proportional: larger changes in already strong districts.
- Piecewise: smaller changes in already strong districts.

| District           | National | 1    | 2     | 3     | 4    | 5    |
|--------------------|----------|------|-------|-------|------|------|
| Election 1         | 0.40     | 0.40 | 0.32  | 0.48  | 0.10 | 0.70 |
| Election 2 polling | 0.60     | ?    | ?     | ?     | ?    | ?    |
| Uniform            | 0.60     | 0.60 | 0.52  | 0.68  | 0.30 | 0.90 |
| Proportional       | 0.60     | 0.60 | 0.48  | 0.72  | 0.15 | 1.05 |
| Piecewise          | 0.60     | 0.60 | 0.547 | 0.653 | 0.40 |      |

- Uniform: same change in each district.
- Proportional: larger changes in already strong districts.
- Piecewise: smaller changes in already strong districts.

| District           | National | 1    | 2     | 3     | 4    | 5    |
|--------------------|----------|------|-------|-------|------|------|
| Election 1         | 0.40     | 0.40 | 0.32  | 0.48  | 0.10 | 0.70 |
| Election 2 polling | 0.60     | ?    | ?     | ?     | ?    | ?    |
| Uniform            | 0.60     | 0.60 | 0.52  | 0.68  | 0.30 | 0.90 |
| Proportional       | 0.60     | 0.60 | 0.48  | 0.72  | 0.15 | 1.05 |
| Piecewise          | 0.60     | 0.60 | 0.547 | 0.653 | 0.40 | 0.80 |

# Reason against uniform swing #1: not the best linear model

- ► Consider a linear model of the form y<sub>i</sub> = ax<sub>i</sub> + b (for positive swing).
- The three axioms force the piecewise model already described, and in particular it differs from uniform.

# Reason against uniform swing #1: not the best linear model

- ► Consider a linear model of the form y<sub>i</sub> = ax<sub>i</sub> + b (for positive swing).
- The three axioms force the piecewise model already described, and in particular it differs from uniform.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

#### • Suppose that $x'_i$ is $x_i$ plus random noise with mean s.

- The well-known "regression to the mean" effect shows that we expect the best linear fit to the data to have (for positive swings) a positive intercept and a slope that is positive but less than 1.
- Note that this is not consistent with the uniform swing model but it is consistent with the piecewise model.

- Suppose that  $x'_i$  is  $x_i$  plus random noise with mean s.
- The well-known "regression to the mean" effect shows that we expect the best linear fit to the data to have (for positive swings) a positive intercept and a slope that is positive but less than 1.
- Note that this is not consistent with the uniform swing model but it is consistent with the piecewise model.

- Suppose that  $x'_i$  is  $x_i$  plus random noise with mean s.
- The well-known "regression to the mean" effect shows that we expect the best linear fit to the data to have (for positive swings) a positive intercept and a slope that is positive but less than 1.
- Note that this is not consistent with the uniform swing model but it is consistent with the piecewise model.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- ► Fitting y = a + bx by ordinary least squares regression to the data, we find â = r<sub>xy</sub>s<sub>y</sub>/s<sub>x</sub>. For positive swings, â should be positive.
- Thus if the sample correlation is not perfect and the sample variances approximately the same (as they will be by assumption), then â is likely strictly less than 1.

- ► Fitting y = a + bx by ordinary least squares regression to the data, we find â = r<sub>xy</sub>s<sub>y</sub>/s<sub>x</sub>. For positive swings, â should be positive.
- ► Thus if the sample correlation is not perfect and the sample variances approximately the same (as they will be by assumption), then â is likely strictly less than 1.

There are reasons why  $x_i^\prime$  might move in the opposite way from regression to the mean.

- demographic reasons such as in- and out-migration make districts safer for the winning party;
- an incumbent of a given party may, especially if winning by large margins, discourage high quality challengers.

There are reasons why  $x_i^\prime$  might move in the opposite way from regression to the mean.

- demographic reasons such as in- and out-migration make districts safer for the winning party;
- an incumbent of a given party may, especially if winning by large margins, discourage high quality challengers.

- For many purposes, we only care about statewide results: how many seats each party wins, or just which party has a majority.
- In such cases, we expect errors in seat-level predictions to average out across seats, if there are enough seats.
- The three models perform almost identically on on the over 34000 pairs of contested elections in the dataset.
- They "predict" the overall winner of the statewide election over 92% of the time and the mean absolute error in the seat fraction won by party A is about 5%.

- For many purposes, we only care about statewide results: how many seats each party wins, or just which party has a majority.
- In such cases, we expect errors in seat-level predictions to average out across seats, if there are enough seats.
- The three models perform almost identically on on the over 34000 pairs of contested elections in the dataset.
- They "predict" the overall winner of the statewide election over 92% of the time and the mean absolute error in the seat fraction won by party A is about 5%.

- For many purposes, we only care about statewide results: how many seats each party wins, or just which party has a majority.
- In such cases, we expect errors in seat-level predictions to average out across seats, if there are enough seats.
- The three models perform almost identically on on the over 34000 pairs of contested elections in the dataset.
- They "predict" the overall winner of the statewide election over 92% of the time and the mean absolute error in the seat fraction won by party A is about 5%.

- For many purposes, we only care about statewide results: how many seats each party wins, or just which party has a majority.
- In such cases, we expect errors in seat-level predictions to average out across seats, if there are enough seats.
- The three models perform almost identically on on the over 34000 pairs of contested elections in the dataset.
- They "predict" the overall winner of the statewide election over 92% of the time and the mean absolute error in the seat fraction won by party A is about 5%.

Table: Results for swing models on standard dataset, over 34000 district-level contested elections

| dataset   | model | winner | sign  | bounds | $\ell_2^2$ | $\ell^\infty$ | ho    |
|-----------|-------|--------|-------|--------|------------|---------------|-------|
| cont only | unif  | 0.874  | 0.676 | 1.000  | 0.005      | 0.509         | 0.890 |
| cont only | prop  | 0.875  | 0.676 | 0.999  | 0.005      | 0.516         | 0.889 |
| cont only | piece | 0.874  | 0.676 | 1.000  | 0.005      | 0.504         | 0.890 |

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Table: Results for swing models on standard dataset, contested elections with at least 30 districts. Fraction of times where 95% confidence interval from linear regression actually contains the model parameter.

| dataset   | model | slope | intercept |
|-----------|-------|-------|-----------|
| cont only | unif  | 0.676 | 0.685     |
| cont only | prop  | 0.559 | 0.584     |
| cont only | piece | 0.736 | 0.747     |

\*ロ \* \* @ \* \* ミ \* ミ \* ・ ミ \* の < @

Over all elections, the mean slope is around 0.9 and mean intercept 0.05.

Each here (AL 1998, CA 2000) satisfies the confidence interval criterion for uniform swing.



・ロト ・ 同ト ・ ヨト ・ ヨト

E

590

Table: Predictions for "competitive" example with 2 parties and 2 districts, swing of  $2\varepsilon$  to A

|              | (A,1)                                | (A,2)                                 |
|--------------|--------------------------------------|---------------------------------------|
| original     | $1/2 - \varepsilon$                  | $1/2 + \varepsilon$                   |
| uniform      | $1/2 + \varepsilon$                  | $1/2 + 3\varepsilon$                  |
| proportional | $1/2 + \varepsilon - 4\varepsilon^2$ | $1/2 + 3\varepsilon + 4\varepsilon^2$ |
| piecewise    | $1/2 + \varepsilon + 4\varepsilon^2$ | $1/2 + 3\varepsilon - 4\varepsilon^2$ |

So it is not surprising that in many real elections, all methods have fairly similar performance.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

## Conclusions

The uniform swing model has more negative features than previously discussed.

- It works OK for many purposes on real vote data, but so do the other models.
- The answer to the question in the title of the talk is: "because we measure crudely, because of cancellation across districts, and because of cancellation caused by competing political processes - but the piecewise model dominates it."
- The piecewise model also deals better with extreme cases and (I guess) non-electoral applications.
- Surely we can find a better swing model than any of the ones presented here (?)

- The uniform swing model has more negative features than previously discussed.
- It works OK for many purposes on real vote data, but so do the other models.
- The answer to the question in the title of the talk is: "because we measure crudely, because of cancellation across districts, and because of cancellation caused by competing political processes - but the piecewise model dominates it."
- The piecewise model also deals better with extreme cases and (I guess) non-electoral applications.
- Surely we can find a better swing model than any of the ones presented here (?)

- The uniform swing model has more negative features than previously discussed.
- It works OK for many purposes on real vote data, but so do the other models.
- The answer to the question in the title of the talk is: "because we measure crudely, because of cancellation across districts, and because of cancellation caused by competing political processes - but the piecewise model dominates it."
- The piecewise model also deals better with extreme cases and (I guess) non-electoral applications.
- Surely we can find a better swing model than any of the ones presented here (?)

- The uniform swing model has more negative features than previously discussed.
- It works OK for many purposes on real vote data, but so do the other models.
- The answer to the question in the title of the talk is: "because we measure crudely, because of cancellation across districts, and because of cancellation caused by competing political processes - but the piecewise model dominates it."
- The piecewise model also deals better with extreme cases and (I guess) non-electoral applications.
- Surely we can find a better swing model than any of the ones presented here (?)

- The uniform swing model has more negative features than previously discussed.
- It works OK for many purposes on real vote data, but so do the other models.
- The answer to the question in the title of the talk is: "because we measure crudely, because of cancellation across districts, and because of cancellation caused by competing political processes - but the piecewise model dominates it."
- The piecewise model also deals better with extreme cases and (I guess) non-electoral applications.
- Surely we can find a better swing model than any of the ones presented here (?)

- ▶ Where else have we seen the need to map [0, 1] to itself to respect bounds and a given condition on the mean?
- Exam scaling is one possible application.
- I am not sure about the need for the third axiom in this case, but the piecewise model is the only one we have looked at that satisfies the first two.
- ▶ Volunteers to try it out? I am unsure about evaluation criteria.

- ▶ Where else have we seen the need to map [0,1] to itself to respect bounds and a given condition on the mean?
- Exam scaling is one possible application.
- I am not sure about the need for the third axiom in this case, but the piecewise model is the only one we have looked at that satisfies the first two.
- ▶ Volunteers to try it out? I am unsure about evaluation criteria.

- ▶ Where else have we seen the need to map [0,1] to itself to respect bounds and a given condition on the mean?
- Exam scaling is one possible application.
- I am not sure about the need for the third axiom in this case, but the piecewise model is the only one we have looked at that satisfies the first two.
- ▶ Volunteers to try it out? I am unsure about evaluation criteria.

- ▶ Where else have we seen the need to map [0, 1] to itself to respect bounds and a given condition on the mean?
- Exam scaling is one possible application.
- I am not sure about the need for the third axiom in this case, but the piecewise model is the only one we have looked at that satisfies the first two.
- ► Volunteers to try it out? I am unsure about evaluation criteria.