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Multivariate GFs - overview

• Often used as a technical device for lower-dimensional
problems (“marking”, cumulative GFs, auxiliary recurrence).

• Determining the GF in closed form is nontrivial even for linear
constant coefficient recurrences (Bousquet-Mélou and
Petkovšek; kernel method).

• Inverting the GF transform (coefficient extraction) is harder
(what do asymptotics mean? phase transitions; geometry of
singularities).

• Current theory is scanty, scattered in the literature (queueing
theory, tilings, analysis of algorithms, . . . ) and not always easy
to use.



Inversion - some quotations

• (E. Bender, SIAM Review 1974) Practically nothing is known
about asymptotics for recursions in two variables even when a
GF is available. Techniques for obtaining asymptotics from
bivariate GFs would be quite useful.

• (A. Odlyzko, Handbook of Combinatorics, 1995) A major
difficulty in estimating the coefficients of mvGFs is that the
geometry of the problem is far more difficult. . . . Even rational
multivariate functions are not easy to deal with.

• (P. Flajolet/R. Sedgewick, Analytic Combinatorics Ch 9 draft)
Roughly, we regard here a bivariate GF as a collection of
univariate GFs . . . .



Our project

• Thoroughly investigate coefficient extraction for meromorphic
F (z) := F (z1, . . . , zd+1) (“small singularities”). Amazingly
little is known even about rational F in 2 variables.

• Goal 1: improve over all previous work in generality, ease of
use, symmetry, computational effectiveness, uniformity of
asymptotics. Create a theory!

• Goal 2: establish mvGFs as an area worth studying in its own
right, a meeting place for many different areas, a common
language. I am recruiting!



Notation and basic taxonomy

• F (z) =
∑
arzr = G(z)/H(z) meromorphic in nontrivial

polydisc in Cd+1.

• V = {z|H(z) = 0} the singular variety of F .

• T (z),D(z) the torus, polydisc centred at 0 and containing z.

• Note dimV = 2d, dim T = d+ 1, dimD = 2(d+ 1). Geometry
for d > 0 very different from d = 0.

• A point of V is strictly minimal (with respect to the usual
partial order on moduli of coordinates) if V ∩ D(z) = {z}.
When F ≥ 0, such points lie in the positive real orthant.

• A minimal point can be a smooth, multiple or cone point,
depending on local geometry of V.



Examples of each geometry

• (smooth points) The generic case. All problems of “Gaussian”
type in analytic combinatorics (sequences, sums of independent
random variables, many more). Airy-type problems.

• (multiple points) Simplest: H a product of distinct affine
factors. For example, F (z) =

∏
i(1−

∑
j aijzj)−1 gives

normalization constants of queueing networks.

• (cone points) GF for tilings of Aztec diamond (not given here).
Aim to prove the Arctic Circle Theorem by direct GF analysis.



Outline of our method

• We use Cauchy integral formula; residue approximation in 1
variable; convert to Fourier-Laplace integral in remaining d
variables; stationary phase method.

• Must specify a direction r̄ = r/|r| for asymptotics.

• To each minimal point z∗ we associate a cone κ(z∗) of
directions. For smooth points of V, κ collapses to a single ray
represented by dir; for multiple points, κ is nontrivial.

• If r̄ is bounded away from κ(z∗), then |z∗rar| decreases
exponentially. We show that if r̄ is in κ(z∗), then (z∗)−r is the
right asymptotic order, and develop full asymptotic expansions,
on a case-by-case basis.



Generic case theorem – smooth point

Theorem 1. Let z∗ be a strictly minimal, simple pole of F . Then
for r̄ = dir(z∗), there is a full asymptotic expansion

ar ∼ (z∗)−r
∑
l≥0

Cl|r|−(d+l)/k.

The constants Cl and k depend analytically on derivatives of G and
H at z∗ of order at most l.

The expansion is uniform over compact sets of minimal poles with
k and the vanishing order of G and H remaining constant.

Generically, k = 2 and we have Ornstein-Zernike (“central limit”)
behaviour. Airy phenomena occur when k = 3 for a given direction
but k = 2 at neighbouring directions.



Specialization to dimension 2

Theorem. Suppose that H(z, w) has a simple pole at P = (1, 1)
and is otherwise analytic in |z| ≤ 1, |w| ≤ 1. Define

Q(1, 1) = −a2b− ab2 − a2z2Hzz − b2w2Hww + abHzw

where a = wHw, b = zHz, all computed at P . Then when r/s = b/a

ars ∼
G(1, 1)√

2π

√
−a

sQ(1, 1)
.

The apparent lack of symmetry is illusory, since r/s = b/a. It is
true mutatis mutandis for each smooth minimal point P .



Exemplifying Theorem 1

• Walks in integer lattice going ↑,→,↗. Here
F (x, y) = (1− x− y − xy)−1. Necessary condition for minimal
point: x(1 + y) = κy(1 + x), κ ≥ 0. So minimal points are all
smooth and in first quadrant.

• For r/s fixed, asymptotics are governed by the minimal point
satisfying 1− x− y − xy = 0, x(1 + y)s = y(1 + x)r.

• Using these relations and the theorem we obtain to first order

ars ∼
[
∆− s

r

]−r [∆− r

s

]−s√
rs

2π∆(r + s−∆)2
.

where ∆ =
√
r2 + s2.

• Extracting the diagonal (“Delannoy numbers”) is easy:

arr ∼ (3 + 2
√

2)r 1
4
√

2(3− 2
√

2)
r−1/2.



New phenomena - multiple points

Theorem 2 Suppose that H has a transverse double pole at (1, 1)
but is otherwise analytic in |z| ≤ 1, |w| ≤ 1. Let H denote the
Hessian of H. Then for each compact subset K of the interior of
κ(1, 1), there is c > 0 such that

ars =

(
G(1, 1)√

−detH(1, 1)
+O(e−c)

)
uniformly for (r, s) ∈ K.

The uniformity breaks down near the walls of the cone, but we
know the expansion on the boundary (in powers of ∆−1).

There are other results for general d and multiplicity.



Exemplifying Theorem 2

An IID sequence of uniform [0, 1] random variables X is used to
generate biased coin-flips as follows. If Pr(H) = p, then X ≤ p

means heads and X > p means tails.

The coins will be biased so that p = 2/3 for the first n flips, and
p = 1/3 thereafter. A player desires to get r heads and s tails and
is allowed to choose n. On average, how many choices of n ≤ r + s

will be winning choices?

The generating function is readily computed to be

F (z, w) =
1

(1− 1
3z −

2
3w)(1− 2

3z −
1
3w)

.

Here (1, 1) is a strictly minimal transverse double point. By
Theorem 2 ars = 3 plus a correction which is exponentially small as
r, s→∞ with r/(r + s) staying in a compact subinterval of
(1/3, 2/3). For other values of r/(r + s), Theorem 1 applies.



More complicated multiple point results

Suppose V is locally the intersection of n+ 1 sheets in dimension
d+ 1 (like queueing example).

• If n ≥ d, generically we have: ar is piecewise polynomial with
exponential error. There are finitely many subcones on each of
which we get a different polynomial.

• If n < d, generically we have: ar has expansion in descending
powers of |r|, starting with (n− d)/2.

• Actual results depend on rank of a certain matrix. All derived
by analysis of Fourier-Laplace integrals. Explicit formulae are
available.



Fourier-Laplace integrals

We are quickly led via z = z∗eiθ to large-λ analysis of integrals of
the form

I(λ) =
∫

D

e−λf(x)ψ(x) dV (x)

where:

• f(0) = 0, f ′(0) = 0 iff r ∈ κ(z∗).

• Re f ≥ 0; the phase f is analytic, the amplitude ψ ∈ C∞.

• D is an (n+ d)-dimensional product of tori, intervals and
simplices; dV the volume element.

Difficulties in analysis: interplay betwen exponential and oscillatory
decay, nonsmooth boundary of simplex.



Sample reduction to F-L in simple case

Suppose (1, 1) is a smooth or multiple strictly minimal point. Here
Ca is the circle of radius a centred at 0, R(z; s; ε) = residue sum in
annulus, N a nbhd of 1.

ars = (2πi)−2

∫
C1

z−r−1

∫
C1−ε

w−s−1F (z, w) dw dz

= (2πi)−2

∫
N

z−r−1

[∫
C1+ε

w−s−1F (z, w)− 2πiR(z; s; ε)

]
dz

∼= −(2πi)−1

∫
N

z−r−1R(z; s; ε) dz

= (2π)−1

∫
N

exp(−irθ + log(−R(z; s; ε)) dθ.

To proceed we need a formula for the residue sum.



Dealing with the residues

• In smooth case R(z; ε) = v(z)s Res(F/w)|w=1/v(z) := v(z)sφ(z).
So above has the form

(2π)−1

∫
N

exp(−s(irθ/s− log v(z)− log(−φ(z)) dθ.

• In multiple case there are n+ 1 poles in the ε-annulus and we
use the following nice lemma:

Let h : C → C and let µ be the normalized volume measure on
Sn. Then

n∑
j=0

h(vj)∏
r 6=j(vj − vr)

=
∫
Sn

h(n)(αv) dµ(α).

For each fixed direction r/s, previous slide’s integral has the F-L
form in n+ d dimensions. Introduction of the n-simplex S makes
the F-L analysis harder.



Asymptotics for F-L integrals

Standard methods for such integrals:

• Stationary phase - localize to critical points of f . Use
integration by parts. See Hörmander.

• Change of variable - away from critical points f can be locally
taken as a coordinate. Differential forms approach. See AGV.

• Move the contour, using Cauchy apparatus. Apply Laplace.

Most (all?) authors require at least one of:

• f purely real or purely imaginary;

• smooth boundary, ψ vanishing near boundary;

• isolated stationary phase points.

Each of these is violated by some of our examples of interest.



Types of critical points arising generically

• Smooth: isolated stationary point, no simplex corners to worry
about. Real part of phase has strict minimum at 0. Simple
extension of Laplace method.

• Multiple, n ≥ d: isolated stationary point. Real part of phase
is zero on lower-dimensional subspace. Need good definition of
critical point. Laplace doesn’t work. Mostly in Hörmander.

• Multiple, n ≤ d: stationary phase points form an affine
subspace of the unit simplex. Not covered anywhere, and tricky.

For most directions the critical points are interior, but some are on
boundary. They are generically quadratically nondegenerate. Many
special cases can occur.



Low-dimensional examples of F-L integrals

• Typical smooth point example looks like∫ 1

−1

e−λ(1+i)x2
dx.

Isolated nondegenerate critical point, exponential decay

• Simplest double point example looks roughly like∫ 1

−1

∫ 1

0

e−λ(x2+2ixy) dy dx.

Note Re f = 0 on x = 0 so rely on oscillation for smallness.

• Multiple point with n = 2, d = 1 gives integral like∫ 1

−1

∫ 1

0

∫ x

−x

e−λ(z2+2izy) dy dx dz.

Simplex corners now intrude, continuum of critical points.



Good points of the method

• Natural, fairly unified approach, reduces to F-L integral which
can almost certainly be done.

• Extremely complicated Leray residue theory is avoided.

• There is an easily checked necessary condition for minimality.

• If F ≥ 0 then minimal points exist for all directions of interest.

• In all other examples, there appears to be a (“topologically
minimal”) point that controls the asymptotics. The
simple-minded contour moving must be replaced by a different
homotopy.



Homological approach

• Residue theory in several complex variables is homological,
difficult to make effective. Consider homology of Cd+1 \ V.

• Recently, Y. Baryshnikov and R. Pemantle have generated
asymptotic expansions when H is a product of affine factors (as
in queueing examples). Uses stratified Morse theory.

• Can’t get directions on boundary of cone by this method. Not
(yet) generalized to nonaffine factors. Still assumes F ≥ 0.



Work still required

• Complete analysis of F-L integrals in general case (large
stationary phase set).

• How to find and classify minimal singularities algorithmically?
Note: a minimal point is a Pareto optimum of the functions
|z1|, . . . , |zd+1|.

• Computer algebra of multivariate asymptotic expansions.

• Patching together asymptotics at cone boundaries; uniformity,
phase transitions.

• Expansions controlled by cone points? A more high-powered
approach (e.g. resolution of singularities) may be needed.
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