Higher Dimensional Lattice Walks: Connecting Combinatorial and Analytic Behavior

Mark C. Wilson
UMass Amherst

Dartmouth College 2020-02-04

Example

- How many n-step lattice walks are there, if walks start from the origin, are confined to the first quadrant, and take steps in $\{S, N E, N W\}$? Call this a_{n}.
- Now reverse the steps to get $\{N, S E, S W\}$; call the analogous
- Conjectured by Bostan \& Kauers (2009):

- Such constrained walk questions have been very actively studied in the last decade. They yield many natural examples of D-finite sequences.

Example

- How many n-step lattice walks are there, if walks start from the origin, are confined to the first quadrant, and take steps in $\{S, N E, N W\}$? Call this a_{n}.
- Now reverse the steps to get $\{N, S E, S W\}$; call the analogous quantity b_{n}.
- Conjectured by Bostan \& Kauers (2009):

- Such constrained walk questions have been very actively studied in the last decade. They yield many natural examples of D-finite sequences.

Example

- How many n-step lattice walks are there, if walks start from the origin, are confined to the first quadrant, and take steps in $\{S, N E, N W\}$? Call this a_{n}.
- Now reverse the steps to get $\{N, S E, S W\}$; call the analogous quantity b_{n}.
- Conjectured by Bostan \& Kauers (2009):

$$
\begin{aligned}
a_{n} & \sim 3^{n} \sqrt{\frac{3}{4 \pi n}} \\
b_{n} & \sim(2 \sqrt{2})^{n} \frac{\theta(n)}{\pi n^{2}} \\
\theta(n) & = \begin{cases}24 \sqrt{2} & \text { if } n \text { is even } \\
32 & \text { if } n \text { is odd. } .\end{cases}
\end{aligned}
$$

- Such constrained walk questions have been very actively studied in the last decade. They yield many natural examples of D-finite sequences.

Example

- How many n-step lattice walks are there, if walks start from the origin, are confined to the first quadrant, and take steps in $\{S, N E, N W\}$? Call this a_{n}.
- Now reverse the steps to get $\{N, S E, S W\}$; call the analogous quantity b_{n}.
- Conjectured by Bostan \& Kauers (2009):

$$
\begin{aligned}
a_{n} & \sim 3^{n} \sqrt{\frac{3}{4 \pi n}} \\
b_{n} & \sim(2 \sqrt{2})^{n} \frac{\theta(n)}{\pi n^{2}} \\
\theta(n) & = \begin{cases}24 \sqrt{2} & \text { if } n \text { is even } \\
32 & \text { if } n \text { is odd. } .\end{cases}
\end{aligned}
$$

- Such constrained walk questions have been very actively studied in the last decade. They yield many natural examples of D-finite sequences.

Overview - walks

- Consider nearest-neighbour walks in \mathbb{Z}^{2}, defined by a set $\mathcal{S} \subseteq\{-1,0,1\}^{2} \backslash\{\mathbf{0}\}$ of short steps.
- We can consider restrictions, e.g. halfspace, nonnegative quadrant, return to x or y-axis, return to the origin.
- We keen track of the endnoint, and also the length. This gives a trivariate sequence $a_{r, s, n}$ with generating function (GF)

- Summing over r, s gives a univariate series $C(1,1, t):=f(t)=\sum_{n} f_{n} t^{n}$.
- We seek in particular the asymptotics of f_{n}.

Overview - walks

- Consider nearest-neighbour walks in \mathbb{Z}^{2}, defined by a set $\mathcal{S} \subseteq\{-1,0,1\}^{2} \backslash\{\mathbf{0}\}$ of short steps.
- We can consider restrictions, e.g. halfspace, nonnegative quadrant, return to x or y-axis, return to the origin.
- We keep track of the endpoint, and also the length. This gives a trivariate sequence $a_{r, s, n}$ with generating function (GF)
- Summing over r, s gives a univariate series $C(1,1, t):=f(t)=\sum_{n} f_{n} t^{n}$
- We seek in particular the asymptotics of f_{n}

Overview - walks

- Consider nearest-neighbour walks in \mathbb{Z}^{2}, defined by a set $\mathcal{S} \subseteq\{-1,0,1\}^{2} \backslash\{\mathbf{0}\}$ of short steps.
- We can consider restrictions, e.g. halfspace, nonnegative quadrant, return to x or y-axis, return to the origin.
- We keep track of the endpoint, and also the length. This gives a trivariate sequence $a_{r, s, n}$ with generating function (GF)

$$
C(x, y, t):=\sum_{r, s, n} a_{r, s, n} x^{r} y^{s} t^{n}
$$

- Summing over r, s gives a univariate series $C(1,1, t):=f(t)=\sum_{n} f_{n} t^{n}$.
- We seek in particular the asymptotics of f_{n}

Overview - walks

- Consider nearest-neighbour walks in \mathbb{Z}^{2}, defined by a set $\mathcal{S} \subseteq\{-1,0,1\}^{2} \backslash\{\mathbf{0}\}$ of short steps.
- We can consider restrictions, e.g. halfspace, nonnegative quadrant, return to x or y-axis, return to the origin.
- We keep track of the endpoint, and also the length. This gives a trivariate sequence $a_{r, s, n}$ with generating function (GF)

$$
C(x, y, t):=\sum_{r, s, n} a_{r, s, n} x^{r} y^{s} t^{n}
$$

- Summing over r, s gives a univariate series $C(1,1, t):=f(t)=\sum_{n} f_{n} t^{n}$.

Overview - walks

- Consider nearest-neighbour walks in \mathbb{Z}^{2}, defined by a set $\mathcal{S} \subseteq\{-1,0,1\}^{2} \backslash\{\mathbf{0}\}$ of short steps.
- We can consider restrictions, e.g. halfspace, nonnegative quadrant, return to x or y-axis, return to the origin.
- We keep track of the endpoint, and also the length. This gives a trivariate sequence $a_{r, s, n}$ with generating function (GF)

$$
C(x, y, t):=\sum_{r, s, n} a_{r, s, n} x^{r} y^{s} t^{n}
$$

- Summing over r, s gives a univariate series $C(1,1, t):=f(t)=\sum_{n} f_{n} t^{n}$.
- We seek in particular the asymptotics of f_{n}.

Interlude - a hierarchy of generating functions

- Rational functions - constant coefficient linear recurrence for coefficients. Example: Fibonacci numbers.
- Algebraic functions - diagonals of rational functions. Example: Catalan numbers.
- D-finite functions (satisfy linear ODE with polynomial coefficients) polynomial coefficient linear recurrence for coefficients. Example: $\binom{3 n}{n}$, Bessel functions.
- Differentially algebraic functions (nonlinear ODE). Example: Bell numbers (egf)
- Worse! Differentially transcendental. Example: $\Gamma(z)$, Bell numbers (ogf)

Interlude - a hierarchy of generating functions

- Rational functions - constant coefficient linear recurrence for coefficients. Example: Fibonacci numbers.
- Algebraic functions - diagonals of rational functions. Example: Catalan numbers.
- D-finite functions (satisfy linear ODE with polynomial coefficients) polynomial coefficient linear recurrence for coefficients. Example: $\binom{3 n}{n}$, Bessel functions
- Differentially algebraic functions (nonlinear ODE). Example: Bell numbers (egf)
- Worse! Differentially transcendental. Example: $\Gamma(z)$, Bell numbers

Interlude - a hierarchy of generating functions

- Rational functions - constant coefficient linear recurrence for coefficients. Example: Fibonacci numbers.
- Algebraic functions - diagonals of rational functions. Example: Catalan numbers.
- D-finite functions (satisfy linear ODE with polynomial coefficients) polynomial coefficient linear recurrence for coefficients. Example: $\binom{3 n}{n}$, Bessel functions.
- Differentially algebraic functions (nonlinear ODE). Example: Bell numbers (egf)
- Worse! Differentially transcendental. Example: $\Gamma(z)$, Bell numbers

Interlude - a hierarchy of generating functions

- Rational functions - constant coefficient linear recurrence for coefficients. Example: Fibonacci numbers.
- Algebraic functions - diagonals of rational functions. Example: Catalan numbers.
- D-finite functions (satisfy linear ODE with polynomial coefficients) polynomial coefficient linear recurrence for coefficients. Example: $\binom{3 n}{n}$, Bessel functions.
- Differentially algebraic functions (nonlinear ODE). Example: Bell numbers (egf).
- Worse! Differentially transcendental. Example: $\Gamma(z)$, Bell numbers

Interlude - a hierarchy of generating functions

- Rational functions - constant coefficient linear recurrence for coefficients. Example: Fibonacci numbers.
- Algebraic functions - diagonals of rational functions. Example: Catalan numbers.
- D-finite functions (satisfy linear ODE with polynomial coefficients) polynomial coefficient linear recurrence for coefficients. Example: $\binom{3 n}{n}$, Bessel functions.
- Differentially algebraic functions (nonlinear ODE). Example: Bell numbers (egf).
- Worse! Differentially transcendental. Example: $\Gamma(z)$, Bell numbers (ogf).

A hierarchy of generating functions from lattice walks

- Unrestricted walks - rational functions - have been understood "forever".
- Walks confined to a halfspace - algebraic functions - understood since Bousquet-Mélou \& Petkovšek (2000), using the kernel method.
- 23 classes of walks confined to a quadrant - D-finite functions reasonably well understood.
- 56 quadrant classes, steps that are not small - non D-finite functions - poorly understood.

A hierarchy of generating functions from lattice walks

- Unrestricted walks - rational functions - have been understood "forever".
- Walks confined to a halfspace - algebraic functions - understood since Bousquet-Mélou \& Petkovšek (2000), using the kernel method.
- 23 classes of walks confined to a quadrant - D-finite functions reasonably well understood.
- 56 quadrant classes, steps that are not small - non D-finite functions - poorly understood.

A hierarchy of generating functions from lattice walks

- Unrestricted walks - rational functions - have been understood "forever".
- Walks confined to a halfspace - algebraic functions - understood since Bousquet-Mélou \& Petkovšek (2000), using the kernel method.
- 23 classes of walks confined to a quadrant - D-finite functions reasonably well understood.
- 56 quadrant classes, steps that are not small - non D-finite functions

A hierarchy of generating functions from lattice walks

- Unrestricted walks - rational functions - have been understood "forever".
- Walks confined to a halfspace - algebraic functions - understood since Bousquet-Mélou \& Petkovšek (2000), using the kernel method.
- 23 classes of walks confined to a quadrant - D-finite functions reasonably well understood.
- 56 quadrant classes, steps that are not small - non D-finite functions - poorly understood.

Previous work on walks in the quadrant, I

- Bousquet-Mélou \& Mishna (2010): there are 79 inequivalent nontrivial cases.
- They introduced a symmetry group $G(S)$ and showed that it is finite in exactly 23 cases.
- They used finiteness to show for 22 cases that $C(x, y, t)$ is D-finite For 19 of these, used the orbit sum method and for 3 more, the half orbit sum method.
- Bostan \& Kauers (2010) explicitly showed that for the 23 rd case (Gessel walks), $f(t)$ is algebraic (and hence D-finite).
- In the other 56 cases, $f(t)$ is indeed apparently not D-finite. So there are 23 nice inequivalent cases to discuss now.

Previous work on walks in the quadrant, I

- Bousquet-Mélou \& Mishna (2010): there are 79 inequivalent nontrivial cases.
- They introduced a symmetry group $G(\mathcal{S})$ and showed that it is finite in exactly 23 cases.
- They used finiteness to show for 22 cases that $C(x, y, t)$ is D-finite. For 19 of these, used the orbit sum method and for 3 more, the half orbit sum method
- Bostan \& Kauers (2010) explicitly showed that for the 23rd case (Gessel walks), $f(t)$ is algebraic (and hence D-finite).
- In the other 56 cases, $f(t)$ is indeed apparently not D-finite. So there are 23 nice inequivalent cases to discuss now.

Previous work on walks in the quadrant, I

- Bousquet-Mélou \& Mishna (2010): there are 79 inequivalent nontrivial cases.
- They introduced a symmetry group $G(\mathcal{S})$ and showed that it is finite in exactly 23 cases.
- They used finiteness to show for 22 cases that $C(x, y, t)$ is D-finite. For 19 of these, used the orbit sum method and for 3 more, the half orbit sum method.
- Bostan \& Kauers (2010) explicitly showed that for the 23rd case (Gessel walks), $f(t)$ is algebraic (and hence D-finite).
- In the other 56 cases, $f(t)$ is indeed apparently not D-finite. So there are 23 nice inequivalent cases to discuss now.

Previous work on walks in the quadrant, I

- Bousquet-Mélou \& Mishna (2010): there are 79 inequivalent nontrivial cases.
- They introduced a symmetry group $G(\mathcal{S})$ and showed that it is finite in exactly 23 cases.
- They used finiteness to show for 22 cases that $C(x, y, t)$ is D-finite. For 19 of these, used the orbit sum method and for 3 more, the half orbit sum method.
- Bostan \& Kauers (2010) explicitly showed that for the 23rd case (Gessel walks), $f(t)$ is algebraic (and hence D-finite).
- In the other 56 cases, $f(t)$ is indeed apparently not D-finite. So there are 23 nice inequivalent cases to discuss now.

Previous work on walks in the quadrant, I

- Bousquet-Mélou \& Mishna (2010): there are 79 inequivalent nontrivial cases.
- They introduced a symmetry group $G(\mathcal{S})$ and showed that it is finite in exactly 23 cases.
- They used finiteness to show for 22 cases that $C(x, y, t)$ is D-finite. For 19 of these, used the orbit sum method and for 3 more, the half orbit sum method.
- Bostan \& Kauers (2010) explicitly showed that for the 23rd case (Gessel walks), $f(t)$ is algebraic (and hence D-finite).
- In the other 56 cases, $f(t)$ is indeed apparently not D-finite. So there are 23 nice inequivalent cases to discuss now.

Previous work on walks in the quadrant, II

- Bostan \& Kauers (2009): conjectured asymptotics for f_{n} in the 23 nice cases. Four of these were dealt with by direct attack.
- Bostan, Chyzak, van Hoeij, Kauers \& Pech (2016): expressed $f(t)$ in terms of hypergeometric integrals in 19 of these cases.
- Melczer \& Mishna (2014): derived rigorous asymptotics for f_{n} in 4 cases.
- Open: proof of asymptotics of f_{n} for 15 cases. We solve that here via a unified approach.

Previous work on walks in the quadrant, II

- Bostan \& Kauers (2009): conjectured asymptotics for f_{n} in the 23 nice cases. Four of these were dealt with by direct attack.
- Bostan, Chyzak, van Hoeij, Kauers \& Pech (2016): expressed $f(t)$ in terms of hypergeometric integrals in 19 of these cases.
- Melczer \& Mishna (2014): derived rigorous asymptotics for f_{n} in 4 cases.
- Onen: proof of asymptotics of f_{n} for 15 cases. We solve that here via a unified approach

Previous work on walks in the quadrant, II

- Bostan \& Kauers (2009): conjectured asymptotics for f_{n} in the 23 nice cases. Four of these were dealt with by direct attack.
- Bostan, Chyzak, van Hoeij, Kauers \& Pech (2016): expressed $f(t)$ in terms of hypergeometric integrals in 19 of these cases.
- Melczer \& Mishna (2014): derived rigorous asymptotics for f_{n} in 4 cases.
- Open: proof of asymptotics of f_{n} for 15 cases. We solve that here via

Previous work on walks in the quadrant, II

- Bostan \& Kauers (2009): conjectured asymptotics for f_{n} in the 23 nice cases. Four of these were dealt with by direct attack.
- Bostan, Chyzak, van Hoeij, Kauers \& Pech (2016): expressed $f(t)$ in terms of hypergeometric integrals in 19 of these cases.
- Melczer \& Mishna (2014): derived rigorous asymptotics for f_{n} in 4 cases.
- Open: proof of asymptotics of f_{n} for 15 cases. We solve that here via a unified approach.

Standing assumptions

- We use boldface to denote a multi-index: $\mathbf{z}=\left(z_{1}, \ldots, z_{d}\right)$, $\mathbf{r}=\left(r_{1}, \ldots, r_{d}\right)$. Similarly $\mathbf{z}^{\mathbf{r}}=z_{1}^{r_{1}} \ldots z_{d}^{r_{d}}$.
- A (multivariate) sequence is a function $a: \mathbb{N}^{d} \rightarrow \mathbb{C}$ for some fixed d. Usually write $a_{\mathbf{r}}$ instead of $a(\mathbf{r})$.
- The generating function (GF) is the formal power series

- Assume $F(\mathbf{z})=G(\mathbf{z}) / H(\mathbf{z})$ where G, H are polynomials. The singular variety $\mathcal{V}:=\{\mathbf{z}: H(\mathbf{z})=0\}$ consists of poles.
- To avoid discussing complicated topology, assume all coefficients of F are nonnegative.

Standing assumptions

- We use boldface to denote a multi-index: $\mathbf{z}=\left(z_{1}, \ldots, z_{d}\right)$, $\mathbf{r}=\left(r_{1}, \ldots, r_{d}\right)$. Similarly $\mathbf{z}^{\mathbf{r}}=z_{1}^{r_{1}} \ldots z_{d}^{r_{d}}$.
- A (multivariate) sequence is a function $a: \mathbb{N}^{d} \rightarrow \mathbb{C}$ for some fixed d. Usually write $a_{\mathbf{r}}$ instead of $a(\mathbf{r})$.
- The generating function (GF) is the formal power series

- Assume $F(\mathbf{z})=G(\mathbf{z}) / H(\mathbf{z})$ where G, H are polynomials. The singular variety $\mathcal{V}:=\{\mathbf{z}: H(\mathbf{z})=0\}$ consists of poles.
- To avoid discussing complicated topology, assume all coefficients of F are nonnegative.

Standing assumptions

- We use boldface to denote a multi-index: $\mathbf{z}=\left(z_{1}, \ldots, z_{d}\right)$, $\mathbf{r}=\left(r_{1}, \ldots, r_{d}\right)$. Similarly $\mathbf{z}^{\mathbf{r}}=z_{1}^{r_{1}} \ldots z_{d}^{r_{d}}$.
- A (multivariate) sequence is a function $a: \mathbb{N}^{d} \rightarrow \mathbb{C}$ for some fixed d. Usually write $a_{\mathbf{r}}$ instead of $a(\mathbf{r})$.
- The generating function (GF) is the formal power series

$$
F(\mathbf{z})=\sum_{\mathbf{r} \in \mathbb{N}^{d}} a_{\mathbf{r}} \mathbf{z}^{\mathbf{r}}
$$

- Assume $F(\mathbf{z})=G(\mathbf{z}) / H(\mathbf{z})$ where G, H are polynomials. The singular variety $\mathcal{V}:=\{\mathbf{z}: H(\mathbf{z})=0\}$ consists of poles.
- To avoid discussing complicated topology, assume all coefficients of F are nonnegative.

Standing assumptions

- We use boldface to denote a multi-index: $\mathbf{z}=\left(z_{1}, \ldots, z_{d}\right)$, $\mathbf{r}=\left(r_{1}, \ldots, r_{d}\right)$. Similarly $\mathbf{z}^{\mathbf{r}}=z_{1}^{r_{1}} \ldots z_{d}^{r_{d}}$.
- A (multivariate) sequence is a function $a: \mathbb{N}^{d} \rightarrow \mathbb{C}$ for some fixed d. Usually write $a_{\mathbf{r}}$ instead of $a(\mathbf{r})$.
- The generating function (GF) is the formal power series

$$
F(\mathbf{z})=\sum_{\mathbf{r} \in \mathbb{N}^{d}} a_{\mathbf{r}} \mathbf{z}^{\mathbf{r}}
$$

- Assume $F(\mathbf{z})=G(\mathbf{z}) / H(\mathbf{z})$ where G, H are polynomials. The singular variety $\mathcal{V}:=\{\mathbf{z}: H(\mathbf{z})=0\}$ consists of poles. are nonnegative.

Standing assumptions

- We use boldface to denote a multi-index: $\mathbf{z}=\left(z_{1}, \ldots, z_{d}\right)$, $\mathbf{r}=\left(r_{1}, \ldots, r_{d}\right)$. Similarly $\mathbf{z}^{\mathbf{r}}=z_{1}^{r_{1}} \ldots z_{d}^{r_{d}}$.
- A (multivariate) sequence is a function $a: \mathbb{N}^{d} \rightarrow \mathbb{C}$ for some fixed d. Usually write $a_{\mathbf{r}}$ instead of $a(\mathbf{r})$.
- The generating function (GF) is the formal power series

$$
F(\mathbf{z})=\sum_{\mathbf{r} \in \mathbb{N}^{d}} a_{\mathbf{r}} \mathbf{z}^{\mathbf{r}}
$$

- Assume $F(\mathbf{z})=G(\mathbf{z}) / H(\mathbf{z})$ where G, H are polynomials. The singular variety $\mathcal{V}:=\{\mathbf{z}: H(\mathbf{z})=0\}$ consists of poles.
- To avoid discussing complicated topology, assume all coefficients of F are nonnegative.

Outline of ACSV project results (steps 3-5)

- Given a direction $\overline{\mathbf{r}}$, to compute asymptotics of $a_{\mathbf{r}}$ in that direction we first restrict to a variety $\operatorname{crit}(\overline{\mathbf{r}})$ of critical points.
- A subset contrib $(\overline{\mathbf{r}}) \subseteq \operatorname{crit}(\overline{\mathrm{r}})$ contributes to asymptotics.
- For $\mathbf{p} \in \operatorname{contrib}(\overline{\mathbf{r}})$, there is a full asymptotic series $\mathcal{A}(\mathbf{p})$ depending on the type of singularity at \mathbf{p}. Each term is computable from finitely many derivatives of G and H at p.
- This yields an asymptotic expansion

$\mathbf{p} \in \operatorname{contrib}(\overline{\mathbf{r}})$
that is uniform on compact subsets of directions, provided the geometry at \mathbf{p} does not change.

Outline of ACSV project results (steps 3-5)

- Given a direction $\overline{\mathbf{r}}$, to compute asymptotics of $a_{\mathbf{r}}$ in that direction we first restrict to a variety $\operatorname{crit}(\overline{\mathbf{r}})$ of critical points.
- A subset contrib $(\overline{\mathbf{r}}) \subseteq \operatorname{crit}(\overline{\mathbf{r}})$ contributes to asymptotics.
- For $p \in \operatorname{contrib}(\bar{r})$, there is a full asymptotic series $\mathcal{A}(p)$ depending on the type of singularity at \mathbf{p}. Each term is computable from finitely many derivatives of G and H at \mathbf{p}.
- This yields an asymptotic expansion

$\mathbf{p} \in \operatorname{contrib}(\overline{\mathbf{r}})$
that is uniform on compact subsets of directions, provided the geometry at \mathbf{n} does not change

Outline of ACSV project results (steps 3-5)

- Given a direction $\overline{\mathbf{r}}$, to compute asymptotics of $a_{\mathbf{r}}$ in that direction we first restrict to a variety $\operatorname{crit}(\overline{\mathbf{r}})$ of critical points.
- A subset contrib $(\overline{\mathbf{r}}) \subseteq \operatorname{crit}(\overline{\mathbf{r}})$ contributes to asymptotics.
- For $\mathbf{p} \in \operatorname{contrib}(\overline{\mathbf{r}})$, there is a full asymptotic series $\mathcal{A}(\mathbf{p})$ depending on the type of singularity at \mathbf{p}. Each term is computable from finitely many derivatives of G and H at \mathbf{p}.
- This yields an asymptotic expansion

$\mathbf{p} \in \operatorname{contrib}(\overline{\mathbf{r}})$
that is uniform on compact subsets of directions, provided the geometry at \mathbf{n} does not change

Outline of ACSV project results (steps 3-5)

- Given a direction $\overline{\mathbf{r}}$, to compute asymptotics of $a_{\mathbf{r}}$ in that direction we first restrict to a variety $\operatorname{crit}(\overline{\mathbf{r}})$ of critical points.
- A subset contrib $(\overline{\mathbf{r}}) \subseteq \operatorname{crit}(\overline{\mathbf{r}})$ contributes to asymptotics.
- For $\mathbf{p} \in \operatorname{contrib}(\overline{\mathbf{r}})$, there is a full asymptotic series $\mathcal{A}(\mathbf{p})$ depending on the type of singularity at \mathbf{p}. Each term is computable from finitely many derivatives of G and H at \mathbf{p}.
- This yields an asymptotic expansion

$$
a_{\mathbf{r}} \sim \sum_{\mathbf{p} \in \operatorname{contrib}(\overline{\mathbf{r}})} \mathbf{p}^{-\mathbf{r}} \mathcal{A}(\mathbf{p})
$$

that is uniform on compact subsets of directions, provided the geometry at \mathbf{p} does not change.

Smooth formulae for general d

- \mathbf{z}_{*} turns out to be a critical point for $\overline{\mathbf{r}}$ iff the outward normal to $\log \mathcal{V}$ is parallel to \mathbf{r}. In other words, for some $\lambda \in \mathbb{C}, \mathbf{z}_{*}$ solves

$$
\nabla_{\log } H(\mathbf{z}):=\left(z_{1} H_{1}, \ldots, z_{d} H_{d}\right)=\lambda \mathbf{r}, H(\mathbf{z})=\mathbf{0} .
$$

where $|\mathbf{r}|=\sum_{i} r_{i}$ and κ is the Gaussian curvature of $\log \mathcal{V}$ at $\log \mathbf{z}_{*}$.

- The Gaussian curvature can be computed explicitly in terms of derivatives of H to second order.

Smooth formulae for general d

- \mathbf{z}_{*} turns out to be a critical point for $\overline{\mathbf{r}}$ iff the outward normal to $\log \mathcal{V}$ is parallel to \mathbf{r}. In other words, for some $\lambda \in \mathbb{C}, \mathbf{z}_{*}$ solves

$$
\nabla_{\log } H(\mathbf{z}):=\left(z_{1} H_{1}, \ldots, z_{d} H_{d}\right)=\lambda \mathbf{r}, H(\mathbf{z})=\mathbf{0} .
$$

$$
a_{\mathbf{r}} \sim \mathbf{z}_{*}(\overline{\mathbf{r}})^{-\mathbf{r}} \sqrt{\frac{1}{(2 \pi|\mathbf{r}|)^{(d-1) / 2} \kappa\left(\mathbf{z}_{*}\right)}} \frac{G\left(\mathbf{z}_{*}\right)}{\left|\nabla_{\log } H\left(\mathbf{z}_{*}\right)\right|}
$$

where $|\mathbf{r}|=\sum_{i} r_{i}$ and κ is the Gaussian curvature of $\log \mathcal{V}$ at $\log \mathbf{z}_{*}$.

Smooth formulae for general d

- \mathbf{z}_{*} turns out to be a critical point for $\overline{\mathbf{r}}$ iff the outward normal to $\log \mathcal{V}$ is parallel to \mathbf{r}. In other words, for some $\lambda \in \mathbb{C}, \mathbf{z}_{*}$ solves

$$
\begin{aligned}
& \nabla_{\log } H(\mathbf{z}):=\left(z_{1} H_{1}, \ldots, z_{d} H_{d}\right)=\lambda \mathbf{r}, H(\mathbf{z})=\mathbf{0} . \\
& a_{\mathbf{r}} \sim \mathbf{z}_{*}(\overline{\mathbf{r}})^{-\mathbf{r}} \sqrt{\frac{1}{(2 \pi|\mathbf{r}|)^{(d-1) / 2} \kappa\left(\mathbf{z}_{*}\right)}} \frac{G\left(\mathbf{z}_{*}\right)}{\mid \nabla_{\log H\left(\mathbf{z}_{*}\right) \mid}}
\end{aligned}
$$

where $|\mathbf{r}|=\sum_{i} r_{i}$ and κ is the Gaussian curvature of $\log \mathcal{V}$ at $\log \mathbf{z}_{*}$.

- The Gaussian curvature can be computed explicitly in terms of derivatives of H to second order.

Outline of approach

- Can in fact get results for weighted walks in general dimension.
- Express f_{n} as diagonal coefficients of $d+1$-variable rational GF F, using the kernel method, orbit sum method, and series manipulations.
- Use mvGF theory of Pemantle and Wilson to extract asymptotics.
- Difficulty 1: singular set of F causes problems and F may have nonpositive coefficients.
- Difficulty 2: numerator often vanishes at points contributing to asymptotics, making general formulae hard to derive.
- Solution 1: ask Mireille Bousquet-Mélou!
- Solution 2: work hard.

Outline of approach

- Can in fact get results for weighted walks in general dimension.
- Express f_{n} as diagonal coefficients of $d+1$-variable rational GF F, using the kernel method, orbit sum method, and series manipulations.
- Use mvGF theory of Pemantle and Wilson to extract asymptotics.
- Difficulty 1: singular set of F causes problems and F may have nonpositive coefficients.
- Difficulty 2: numerator often vanishes at points contributing to asymptotics, making general formulae hard to derive.
- Solution 1: ask Mireille Bousquet-Mélou!
- Solution 2: work hard

Outline of approach

- Can in fact get results for weighted walks in general dimension.
- Express f_{n} as diagonal coefficients of $d+1$-variable rational GF F, using the kernel method, orbit sum method, and series manipulations.
- Use mvGF theory of Pemantle and Wilson to extract asymptotics.
- Difficulty 1: singular set of F causes problems and F may have nonpositive coefficients.
- Difficulty 2: numerator often vanishes at points contributing to asymptotics, making general formulae hard to derive.
- Solution 1: ask Mireille Bousquet-Mélou!
- Solution 2: work hard

Outline of approach

- Can in fact get results for weighted walks in general dimension.
- Express f_{n} as diagonal coefficients of $d+1$-variable rational GF F, using the kernel method, orbit sum method, and series manipulations.
- Use mvGF theory of Pemantle and Wilson to extract asymptotics.
- Difficulty 1: singular set of F causes problems and F may have nonpositive coefficients.
- Difficulty 2: numerator often vanishes at points contributing to asymptotics, making general formulae hard to derive.
- Solution 1: ask Mireille Bousquet-Mélou!
- Solution 2: work hard

Outline of approach

- Can in fact get results for weighted walks in general dimension.
- Express f_{n} as diagonal coefficients of $d+1$-variable rational GF F, using the kernel method, orbit sum method, and series manipulations.
- Use mvGF theory of Pemantle and Wilson to extract asymptotics.
- Difficulty 1: singular set of F causes problems and F may have nonpositive coefficients.
- Difficulty 2: numerator often vanishes at points contributing to asymptotics, making general formulae hard to derive.

Outline of approach

- Can in fact get results for weighted walks in general dimension.
- Express f_{n} as diagonal coefficients of $d+1$-variable rational GF F, using the kernel method, orbit sum method, and series manipulations.
- Use mvGF theory of Pemantle and Wilson to extract asymptotics.
- Difficulty 1: singular set of F causes problems and F may have nonpositive coefficients.
- Difficulty 2: numerator often vanishes at points contributing to asymptotics, making general formulae hard to derive.
- Solution 1: ask Mireille Bousquet-Mélou!
- Solution 2: work hard.

Outline of approach

- Can in fact get results for weighted walks in general dimension.
- Express f_{n} as diagonal coefficients of $d+1$-variable rational GF F, using the kernel method, orbit sum method, and series manipulations.
- Use mvGF theory of Pemantle and Wilson to extract asymptotics.
- Difficulty 1: singular set of F causes problems and F may have nonpositive coefficients.
- Difficulty 2: numerator often vanishes at points contributing to asymptotics, making general formulae hard to derive.
- Solution 1: ask Mireille Bousquet-Mélou!
- Solution 2: work hard.

General dimension

- Melczer-Mishna analysed the case where \mathcal{S} is symmetric over all d axes.
- We analyse the case with $d-1$ axes of symmetry (with weights having the same symmetry).
- Examples show that with fewer than $d-1$ symmetries, the GF is not D-finite, so such an approach must fail.
- We write $S(\mathbf{z})=\sum_{\mathbf{i} \in \mathcal{S}} w_{\mathrm{i}} \mathbf{z}^{\mathbf{i}}=z_{d} B+Q+\bar{z}_{d} A$ where $\bar{z}=z^{-1}$ and A, B, Q are independent of z_{d}.
- The drift is the difference $B(1)-A(1)$ between the weight of positive and negative steps in the asymmetric direction.

General dimension

- Melczer-Mishna analysed the case where \mathcal{S} is symmetric over all d axes.
- We analyse the case with $d-1$ axes of symmetry (with weights having the same symmetry).
- Examples show that with fewer than $d-1$ symmetries, the GF is not D-finite, so such an approach must fail.
- We write $S(\mathbf{z})=\sum_{i \in s} w_{;} \mathbf{z}^{\mathbf{i}}=z_{d} B+Q+\bar{z}_{d} A$ where $\bar{z}=z^{-1}$ and A, B, Q are independent of z_{d}.
- The drift is the difference $B(\mathbf{1})-A(\mathbf{1})$ between the weight of positive and negative steps in the asymmetric direction.

General dimension

- Melczer-Mishna analysed the case where \mathcal{S} is symmetric over all d axes.
- We analyse the case with $d-1$ axes of symmetry (with weights having the same symmetry).
- Examples show that with fewer than $d-1$ symmetries, the GF is not D-finite, so such an approach must fail.
A, B, Q are independent of z_{d}.
- The drift is the difference $B(\mathbf{1})-A(1)$ between the weight of positive and negative steps in the asymmetric direction.

General dimension

- Melczer-Mishna analysed the case where \mathcal{S} is symmetric over all d axes.
- We analyse the case with $d-1$ axes of symmetry (with weights having the same symmetry).
- Examples show that with fewer than $d-1$ symmetries, the GF is not D-finite, so such an approach must fail.
- We write $S(\mathbf{z})=\sum_{\mathbf{i} \in \mathcal{S}} w_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}=z_{d} B+Q+\bar{z}_{d} A$ where $\bar{z}=z^{-1}$ and A, B, Q are independent of z_{d}.
positive and negative steps in the asymmetric direction.

General dimension

- Melczer-Mishna analysed the case where \mathcal{S} is symmetric over all d axes.
- We analyse the case with $d-1$ axes of symmetry (with weights having the same symmetry).
- Examples show that with fewer than $d-1$ symmetries, the GF is not D-finite, so such an approach must fail.
- We write $S(\mathbf{z})=\sum_{\mathbf{i} \in \mathcal{S}} w_{\mathbf{i}} \mathbf{z}^{\mathbf{i}}=z_{d} B+Q+\bar{z}_{d} A$ where $\bar{z}=z^{-1}$ and A, B, Q are independent of z_{d}.
- The drift is the difference $B(\mathbf{1})-A(\mathbf{1})$ between the weight of positive and negative steps in the asymmetric direction.

Theorem

$$
F(\mathbf{1}, t)=\Delta\left(\frac{G(\mathbf{z}, t)}{H(\mathbf{z}, t)}\right)
$$

where

$$
\begin{aligned}
& G(\mathbf{z}, t)=\left(1+z_{1}\right) \cdots\left(1+z_{d-1}\right)\left(1-t z_{1} \cdots z_{d}\left(Q+2 z_{d} A\right)\right) \\
& H(\mathbf{z}, t)=\left(1-z_{d}\right)\left(1-t z_{1} \cdots z_{d} \bar{S}(\mathbf{z})\right)\left(1-t z_{1} \cdots z_{d}\left(Q+z_{d} A\right)\right)
\end{aligned}
$$

and

$$
\bar{S}(\mathbf{z})=S\left(\mathbf{z}_{\hat{d}}, \bar{z}_{d}\right)=\bar{z}_{d} B\left(\mathbf{z}_{\hat{d}}\right)+Q\left(\mathbf{z}_{\hat{d}}\right)+z_{d} A\left(\mathbf{z}_{\hat{d}}\right) .
$$

Theorem (Positive Drift Asymptotics)
Let

$$
b_{k}=\sum_{\mathbf{i} \in \mathcal{S}, i_{k}=1} w_{\mathbf{i}}=\sum_{\mathbf{i} \in \mathcal{S}, i_{k}=-1} w_{\mathbf{i}}
$$

for $1 \leq k<d$. Then

$$
f_{n} \sim S(\mathbf{1})^{n} \cdot n^{\frac{-(d-1)}{2}} \cdot\left[\left(1-\frac{A(\mathbf{1})}{B(\mathbf{1})}\right)\left(\frac{S(\mathbf{1})}{\pi}\right)^{\frac{d-1}{2}} \frac{1}{\sqrt{b_{1} \cdots b_{d-1}}}\right]
$$

Theorem (Negative Drift Asymptotics)
Let $\rho=\sqrt{\frac{A(\mathbf{1})}{B(\mathbf{1})}}$, let $b_{k}\left(\mathbf{z}_{\hat{k}}\right):=\left[z_{k}\right] S(\mathbf{z})=\left[z_{k}^{-1}\right] S(\mathbf{z})$ and let

$$
C_{\rho}:=\frac{S(\mathbf{1}, \rho) \rho}{2 \pi^{d / 2} A(\mathbf{1})(1-1 / \rho)^{2}} \cdot \sqrt{\frac{S(\mathbf{1}, \rho)^{d}}{\rho b_{1}(\mathbf{1}, \rho) \cdots b_{d-1}(\mathbf{1}, \rho) \cdot B(\mathbf{1})}} .
$$

- If $Q \neq 0$ then

$$
f_{n} \sim S(\mathbf{1}, \rho)^{n} \cdot n^{-d / 2-1} \cdot C_{\rho} .
$$

- If $Q=0$ then

$$
f_{n} \sim n^{-d / 2-1} \cdot\left[S(\mathbf{1}, \rho)^{n} \cdot C_{\rho}+S(\mathbf{1},-\rho)^{n} \cdot C_{-\rho}\right] .
$$

Example

Consider the model defined by $\mathcal{S}=\{(1,0),(-1,0),(0,1),(0,-1)\}$, where the south step $(0,-1)$ has weight $a>0$ and the north step $(0,1)$ has weight $b>0$ (when a and b are integers we can think of having multiple copies of each step with different colours). Then

$$
A(x)=a \quad Q(x)=\bar{x}+x \quad B(x)=b
$$

and

$$
f_{n} \sim \begin{cases}(2+2 \sqrt{a b})^{n} \cdot n^{-2} \cdot \frac{2 a^{1 / 4}(1+\sqrt{a b})^{2}}{\pi b^{3 / 4}(\sqrt{a}-\sqrt{b})^{2}} & : b<a \\ (2+2 a)^{n} \cdot n^{-1} \cdot \frac{2(1+a)}{\sqrt{a} \pi} & : b=a \\ (2+a+b)^{n} \cdot n^{-1 / 2} \cdot \frac{(a+b) \sqrt{2+a+b}}{b \sqrt{\pi}} & : b>a\end{cases}
$$

with the different cases corresponding to negative drift, zero drift, and positive drift.

\mathcal{S}	Asymptotics	\mathcal{S}	Asymptotics	\mathcal{S}	Asymptotics
	$\begin{gathered} \frac{4}{\pi} \cdot \frac{4^{n}}{n} \\ \frac{2}{\pi} \cdot \frac{4^{n}}{n} \\ \frac{\sqrt{6}}{\pi} \cdot \frac{6^{n}}{n} \\ \frac{8}{3 \pi} \cdot \frac{8^{n}}{n} \\ \frac{2 \sqrt{2}}{\Gamma(1 / 4)} \cdot \frac{3^{n}}{n^{3 / 4}} \\ \frac{3 \sqrt{3}}{\sqrt{2} \Gamma(1 / 4)} \cdot \frac{3^{n}}{n^{3 / 4}} \\ \frac{\sqrt{6 \sqrt{3}}}{\Gamma(1 / 4)} \cdot \frac{6^{n}}{n^{3 / 4}} \\ \frac{4 \sqrt{3}}{3 \Gamma(1 / 3)} \cdot \frac{4^{n}}{n^{2 / 3}} \end{gathered}$		$\begin{aligned} & \frac{\sqrt{3}}{2 \sqrt{\pi}} \cdot \frac{3^{n}}{\sqrt{n}} \\ & \frac{4}{3 \sqrt{\pi}} \cdot \frac{4^{n}}{\sqrt{n}} \\ & \frac{\sqrt{5}}{3 \sqrt{2 \pi}} \cdot \frac{5^{n}}{\sqrt{n}} \\ & \frac{\sqrt{5}}{2 \sqrt{2 \pi}} \cdot \frac{5^{n}}{\sqrt{n}} \\ & \frac{2 \sqrt{3}}{3 \sqrt{\pi}} \cdot \frac{6^{n}}{\sqrt{n}} \\ & \frac{\sqrt{7}}{3 \sqrt{3 \pi}} \cdot \frac{7^{n}}{\sqrt{n}} \\ & \frac{3 \sqrt{3}}{2 \sqrt{\pi}} \cdot \frac{3^{n}}{n^{3 / 2}} \\ & \frac{3 \sqrt{3}}{2 \sqrt{\pi}} \cdot \frac{6^{n}}{n^{3 / 2}} \end{aligned}$		$\begin{gathered} \frac{A_{n}}{\pi} \cdot \frac{(2 \sqrt{2})^{n}}{n^{2}} \\ \frac{B_{n}}{\pi} \cdot \frac{(2 \sqrt{3})^{n}}{n^{2}} \\ \frac{C_{n}}{\pi} \cdot \frac{(2 \sqrt{6})^{n}}{n^{2}} \\ \frac{\sqrt{8}(1+\sqrt{2})^{7 / 2}}{\pi} \cdot \frac{(2+2 \sqrt{2})^{n}}{n^{2}} \\ \frac{\sqrt{3}(1+\sqrt{3})^{7 / 2}}{2 \pi} \cdot \frac{(2+2 \sqrt{3})^{n}}{n^{2}} \\ \frac{\sqrt{570-114 \sqrt{6}}(24 \sqrt{6}+59)}{19 \pi} \cdot \frac{(2+2 \sqrt{6})^{n}}{n^{2}} \\ \frac{8}{\pi} \cdot \frac{4^{n}}{n^{2}} \end{gathered}$

Table: Asymptotics for the 23 D-finite models.

$$
A_{n}=\left\{\begin{array}{ll}
24 \sqrt{2} & : n \text { even } \\
32 & : n \text { odd }
\end{array}, \quad B_{n}=\left\{\begin{array}{ll}
12 \sqrt{3} & : n \text { even } \\
18 & : n \text { odd }
\end{array}, \quad C_{n}= \begin{cases}12 \sqrt{30} & : n \text { even } \\
144 / \sqrt{5} & : n \text { odd }\end{cases}\right.\right.
$$

Extensions

- Small modifications yield results for walks constrained to return to an axis or the origin.
- Walks in Weyl chambers can be treated in this way.
- The zero-drift case is tricky; we worked out the generic case but there are many non-generic subcases.

Part of table of results for excursions

\mathcal{S}	Return to x-axis	Return to y-axis	Return to origin
\square	$\frac{8}{\pi} \cdot \frac{4^{n}}{n^{2}}$	$\frac{8}{\pi} \cdot \frac{4^{n}}{n^{2}}$	$\delta_{n} \frac{32}{\pi} \cdot \frac{4^{n}}{n^{3}}$
X	$\delta_{n} \frac{4}{\pi} \cdot \frac{4^{n}}{n^{2}}$	$\delta_{n} \frac{4}{\pi} \cdot \frac{4^{n}}{n^{2}}$	$\delta_{n} \frac{8}{\pi} \cdot \frac{4^{n}}{n^{3}}$
X	$\frac{3 \sqrt{6}}{2 \pi} \cdot \frac{6^{n}}{n^{2}}$	$\delta_{n} \frac{2 \sqrt{6}}{\pi} \cdot \frac{6^{n}}{n^{2}}$	$\delta_{n} \frac{3 \sqrt{6}}{\pi} \cdot \frac{6^{n}}{n^{3}}$
$甘$	$\frac{32}{9 \pi} \cdot \frac{8^{n}}{n^{2}}$	$\frac{32}{9 \pi} \cdot \frac{8^{n}}{n^{2}}$	$\frac{128}{27 \pi} \cdot \frac{8^{n}}{n^{3}}$
Y	$\frac{3 \sqrt{3}}{4 \sqrt{\pi}} \frac{3^{n}}{n^{3 / 2}}$	$\delta_{n} \frac{4 \sqrt{2}}{\pi} \frac{(2 \sqrt{2})^{n}}{n^{2}}$	$\epsilon_{n} \frac{16 \sqrt{2}}{\pi} \frac{(2 \sqrt{2})^{n}}{n^{3}}$
Y	$\frac{8}{3 \sqrt{\pi}} \frac{4^{n}}{n^{3 / 2}}$	$\delta_{n} \frac{4 \sqrt{3}}{\pi} \frac{(2 \sqrt{3})^{n}}{n^{2}}$	$\delta_{n} \frac{12 \sqrt{3}}{\pi} \frac{(2 \sqrt{3})^{n}}{n^{3}}$
Δ	$\frac{5 \sqrt{10}}{16 \sqrt{\pi}} \frac{5^{n}}{n^{3 / 2}}$	$\frac{\sqrt{2}(1+\sqrt{2})^{3 / 2}}{\pi} \frac{(2+2 \sqrt{2})^{n}}{n^{2}}$	$\frac{2(1+\sqrt{2})^{3 / 2}}{\pi} \frac{(2+2 \sqrt{2})^{n}}{n^{3}}$
X	$\frac{5 \sqrt{10}}{24 \sqrt{\pi}} \frac{5^{n}}{n^{3 / 2}}$	$\delta_{n} \frac{4 \sqrt{30}}{5 \pi} \frac{(2 \sqrt{6})^{n}}{n^{2}}$	$\delta_{n} \frac{24 \sqrt{30}}{25 \pi} \frac{(2 \sqrt{6})^{n}}{n^{3}}$

Deriving generating function: kernel method

- Introduced by Knuth and developed by Bousquet-Mélou and others into a powerful tool.
- Recursion gives

$$
(1-t S(\mathbf{z})) z_{1} \cdots z_{d} F(\mathbf{z}, t)=z_{1} \cdots z_{d}+\sum_{k=1}^{d} L_{k}\left(\mathbf{z}_{\hat{k}}, t\right)
$$

where

$$
L_{k}\left(\mathbf{z}_{\hat{k}}, t\right) \in \mathbb{Q}\left[\mathbf{z}_{\hat{k}}\right][[t]] .
$$

- There is a symmetry group of S generated by maps $z_{k} \mapsto 1 / z_{k}$ and $z_{d} \mapsto \bar{z}_{d} \frac{A\left(\mathbf{z}_{\hat{d}}\right)}{B\left(\mathbf{z}_{\hat{d}}\right)}$.
- An alternating sum over the group almost fixes the left side and kills the L_{k} terms on the right, allowing us to solve for the power series F by taking the terms with no negative powers.
- We use a simple change of variable to convert the positive part of a Laurent series to the diagonal of a series.

Hörmander's explicit formula

The asymptotic contribution of an isolated nondegenerate stationary point is

$$
\left(\operatorname{det}\left(\frac{\lambda f^{\prime \prime}(\mathbf{0})}{2 \pi}\right)\right)^{-1 / 2} \sum_{k \geq 0} \lambda^{-k} L_{k}(A, f)
$$

where L_{k} is a differential operator of order $2 k$ evaluated at $\mathbf{0}$. Specifically,

$$
\begin{aligned}
\underline{f}(t) & =f(t)-(1 / 2) t f^{\prime \prime}(0) t^{T} \\
\mathcal{D} & =\sum_{a, b}\left(f^{\prime \prime}(\mathbf{0})^{-1}\right)_{a, b}\left(-\mathrm{i} \partial_{a}\right)\left(-\mathrm{i} \partial_{b}\right) \\
L_{k}(A, f) & =\sum_{l \leq 2 k} \frac{\mathcal{D}^{l+k}\left(A \underline{f}^{l}\right)(0)}{(-1)^{k} 2^{l+k} l!(l+k)!} .
\end{aligned}
$$

Example (2-D case with no symmetry: $\mathcal{S}=\{N, W, S E\}$)
It turns out that

$$
F(t)=\Delta\left(\frac{\left(x^{2}-y\right)(1-\overline{x y})\left(x-y^{2}\right)}{(1-x)(1-y)(1-x y t(\bar{y}+y \bar{x}+x))}\right) .
$$

We decompose

$$
\begin{aligned}
\frac{\left(x^{2}-y\right)(1-\overline{x y})\left(x-y^{2}\right)}{(1-x)(1-y)(1-x y t(\bar{y}+y \bar{x}+x))}= & -\frac{(1-\overline{x y})\left(x-y^{2}\right)(x+1)}{(1-y)(1-x y t(\bar{y}+y \bar{x}+x))} \\
& +\frac{(1-\overline{x y})\left(x-y^{2}\right)}{(1-x)(1-x y t(\bar{y}+y \bar{x}+x))}
\end{aligned}
$$

Our usual methods now yield

$$
f_{n}=\frac{3^{n}}{n^{3 / 2}}\left(\frac{3 \sqrt{3}}{2 \sqrt{\pi}}+O\left(n^{-1}\right)\right) .
$$

References

- S. Melczer \& M. C. Wilson, Higher Dimensional Lattice Walks: Connecting Combinatorial and Analytic Behavior. http://arxiv.org/abs/1810.06170.
- R. Pemantle \& M.C. Wilson, Analytic Combinatorics in Several Variables, Cambridge University Press 2013. http://ACSVproject.org
- Sage implementations by Alex Raichev: https://github.com/araichev/amgf.

Publication reform

- Pressure is building for complete conversion of the journal system to open access (e.g. Plan S from European research funders)
- Large commercial publishers have incentives not aligned with scholarship or the interests of readers and authors, and provide overall low quality service for very high prices.
- The journal market is dysfunctional (not properly competitive).
- I am associated with several organizations aiming to improve this: MathOA, Free Journal Network, Publishing Reform Forum. If you would like to help or learn more, please contact me.

