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Lattice path asymptotics

Introduction and motivation

Example (A test problem)

I How many n-step nearest neighbour walks are there, if walks
start from the origin, are confined to the first quadrant, and
take steps in {S,NE,NW}? Call this an.

I Conjectured by Bostan & Kauers:

an ∼ 3n
√

3

4πn
.

I These kinds of lattice walks have many applications. They
model physical and chemical structures. Their random
analogues are important in queueing theory.
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Lattice path asymptotics

Introduction and motivation

Overview — walks

I Consider nearest-neighbour walks in Zd, defined by a set
S ⊆ {−1, 0, 1}d \ {0} of short steps. Define

Sj = {i : (i, j) ∈ S} for each j ∈ {−1, 0, 1}.

I We can consider unrestricted walks, walks restricted to a
halfspace, and walks restricted to the nonnegative orthant.
The last is the most challenging, and we concentrate on it
today.

I We can keep track of the endpoint, and also the length. This
gives a d+ 1-variate sequence ar,n with generating function
(GF)

∑
r,n ar,nx

rtn.

I Summing over r gives a univariate series f(t) =
∑

n fnt
n.

I We seek in particular the asymptotics of fn, the number of
walks of a given length.
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Introduction and motivation

A hierarchy of GFs arising in these problems

I Rational functions

I Algebraic functions

I D-finite functions (satisfy a linear ODE with polynomial
coefficients)

I Worse functions

I Unrestricted and halfspace walks with short steps yield
rational/algebraic GFs via the kernel method and are well
understood (Bousquet-Mélou & Petkovsek).

I We concentrate today on 2-dimensional walks in the
nonnegative quadrant.
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Introduction and motivation

Previous work on walks in the quadrant, I

I Bousquet-Mélou & Mishna (2010) showed that for d = 2
there are 79 inequivalent nontrivial cases.

I They introduced a symmetry group G(S) and showed that
this is finite (of size 4, 6, or 8) in exactly 23 cases.

I They used finiteness to show for 22 cases that F is D-finite.
For 19 of these, used the orbit sum method and for 3 more,
the half orbit sum method.

I Bostan & Kauers (2010): for d = 2, explicitly showed the
23rd case (Gessel walks) has algebraic f .
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Previous work on walks in the quadrant , II

I Bostan & Kauers (2009): for d = 2, conjectured asymptotics
for fn in the 23 cases.

I Bostan, Chyzak, van Hoeij, Kauers & Pech: for d = 2,
expressed f in terms of hypergeometric integrals in 19 cases.
We use their numbering of the cases and borrow their table
below.

I Melczer & Mishna (2014): derived asymptotics for fn in cases
1–4.

I Open: proof of asymptotics of fn for cases 5–16. We solve
that here.
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Table of All Conjectured D-Finite F(t; 1, 1) [Bostan & Kauers 2009]

OEIS S alg equiv OEIS S alg equiv

1 A005566 N 4
p

4n

n 13 A151275 N 12
p

30
p

(2
p

6)n

n2

2 A018224 N 2
p

4n

n 14 A151314 N
p

6lµC5/2

5p
(2C)n

n2

3 A151312 N
p

6
p

6n

n 15 A151255 N 24
p

2
p

(2
p

2)n

n2

4 A151331 N 8
3p

8n

n 16 A151287 N 2
p

2A7/2

p
(2A)n

n2

5 A151266 N 1
2

q
3
p

3n

n1/2 17 A001006 Y 3
2

q
3
p

3n

n3/2

6 A151307 N 1
2

q
5

2p
5n

n1/2 18 A129400 Y 3
2

q
3
p

6n

n3/2

7 A151291 N 4
3
p

p
4n

n1/2 19 A005558 N 8
p

4n

n2

8 A151326 N 2p
3p

6n

n1/2

9 A151302 N 1
3

q
5

2p
5n

n1/2 20 A151265 Y 2
p

2
G(1/4)

3n

n3/4

10 A151329 N 1
3

q
7

3p
7n

n1/2 21 A151278 Y 3
p

3p
2G(1/4)

3n

n3/4

11 A151261 N 12
p

3
p

(2
p

3)n

n2 22 A151323 Y
p

233/4

G(1/4)
6n

n3/4

12 A151297 N
p

3B7/2

2p
(2B)n

n2 23 A060900 Y 4
p

3
3G(1/3)

4n

n2/3

A = 1 +
p

2, B = 1 +
p

3, C = 1 +
p

6, l = 7 + 3
p

6, µ =

q
4
p

6�1
19

. Computerized discovery by enumeration + Hermite–Padé + LLL/PSLQ.

Frédéric Chyzak Small-Step Walks
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ACSV

I Robin Pemantle and I derived general formulae for
asymptotics of coefficients of rational functions F = G/H in
dimension d (see our book).

I Analysis is based on the geometry of the singular variety
(zero-set of H) near contributing critical points z∗ depending
on the direction r.

I The ultimate justification involves Morse theory, but convex
analysis often suffices in the combinatorial case.

I We deal in particular with multiple points (locally a transverse
intersection of k smooth factors). If 1 ≤ k ≤ d, formulae are
of the form

ar ∼ z∗
−r
∑

l≥0
bl||r||−(d−k)/2−l.
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Diagonals

I The orbit sum approach yields F as the positive part of a
rational series.

I This is the leading diagonal of a closely related series.

I The GF for walks restricted to the quarter plane has the form

f = diag
xyP (x−1, y−1)

(1− txyS(x−1, y−1)) (1− x)(1− y)
where S and P are polynomials:

S(x, y) =
∑

(i,j)∈S

xiyj

P (x, y) =
∑

σ∈G
sign(σ)σ(xy).

I The trivariate GF is rational but the diagonal is only D-finite.
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Singularities

I The factor H1 := 1− txyS(x−1, y−1) is a polynomial. Then

∇logH1 := (x∂H1/∂x, y∂H1/∂y, t∂H1/∂t)

= (−1 + ty∂S/∂x,−1 + tx∂S/∂y,−1)

and thus this factor is everywhere smooth.

I Other singularities come from factors of (1− x), (1− y) and
possibly from clearing denominators of xyP (x−1, y−1).

I When F is combinatorial, there is a dominant singularity for
direction 1 lying in the positive orthant.
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Critical points

I H1 contains a smooth critical point (x, y, t) for the direction
(1, 1, 1) if and only if ∇S(x−1, y−1) = 0.

I This occurs if and only if

∑

i=−1,j
yj − x−2

∑

i=1,j

yj = 0

∑

i∈S−1

xi − y−2
∑

i∈S1

xi = 0.

I If S has a vertical axis of symmetry, then (x2 − 1)
∑

j y
j = 0.
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Structure of G

I Write

S(x, y) = y−1A−1(x) +A0(x) + yA1(x)

= x−1B−1(y) +B0(y) + xB1(y).

I G is generated by the involutions (considered as algebra
homomorphisms)

(x, y) 7→
(
x−1

B−1(y)

B1(y)
, y

)

(x, y) 7→
(
x, y−1

A−1(x)

A1(x)

)

I If S has vertical symmetry then B1 = B−1, these maps
commute, and G has order 4.
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Vertical axis of symmetry, I

I This covers Cases 1–16. The possible denominators from P
are x2 + 1, x2 + x+ 1. Neither can contribute because the
problem is combinatorial and aperiodic. The dominant point
has x = 1.

I The numerator vanishes iff |S1| = |S−1|. In that case
cancellation occurs and k = 1 (smooth point at (1, 1, 1/|S|)).
This solves Cases 1–4: leading term C|S|nn−1/2.

I Otherwise, there is a double point (k = 2) at (1, 1, 1/|S|). Its
contribution is nonzero if and only if the numerator does not
vanish and the direction (1, 1, 1) lies in a certain cone.

I The direction lies in the cone iff ∂S/∂x(1, 1) ≥ 0, iff
|S1| ≥ |S−1| (happens in Cases 1–10).

I Thus for Cases 5–10 we have leading term C|S|nn−1.
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Vertical axis of symmetry, II

I There is a smooth critical point where y2 = |S1|/|S−1|, so y is
a quadratic irrational at worst.

I . The exponential rate is

S(1, y−1) = |S0|+ y−1|S1|+ y|S−1| = |S0|+ 2
√
|S1||S−1|.

I The arithmetic-geometric mean inequality shows that this is
smaller than |S|, with equality if and only if |S1| = |S−1|.

I This holds in Cases 11–16.
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Interesting smooth point situation

I Normally the polynomial correction starts with n−1, since
(3− 1)/2 = 1. The lth term is of order n−l.

I If the numerator vanishes at the dominant point, the l = 1
term vanishes.

I This happens in all cases 11–16. The numerator simplifies at
the smooth point to (1 + x)(1− y2|S−1|/|S1|), which is zero
from the critical point equation for y.

I The leading term asymptotic is C(|S0|+ 2
√
|S1||S−1|)nn−2.
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Explanation

I The key quantity for walks with vertical symmetry is the
difference between the upward and downward steps (the drift).

I If this is positive, there are more possible walks that don’t
cross the boundary, so the quarter plane restriction is
encountered less often. Asymptotics come from the double
point (1, 1, 1/|S|).

I If the drift is nonpositive, asymptotics come from the highest
smooth point.

I This explains Cases 1–16 in a unified way. We could derive
higher order asymptotics too (e.g. using Sage package
implementing Raichev & Wilson papers).
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Other cases

I Cases 17–19 also follow as above, with slightly different
formulae and more work.

I Cases 20–23 are harder. We don’t have a nice diagonal
expression, and the conjectured asymptotics show that
analysis will be trickier. However the GFs are known to be
algebraic and 1-dimensional methods can be used.
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Extensions

I We can derive similar expressions for the number of walks
returning to the x-axis, the y-axis, or the origin. A very
similar analysis proves recently conjectured asymptotics of
Bostan, Chyzak, van Hoeij, Kauers, and Pech.

I Usually, the asymptotics are changed by a factor of n or
√
n.

Sometimes the exponential rate changes, depending on the
shape of the step set.

I Our approach allows for unified analysis of rational trivariate
GFs, which provides results and insight, rather than ad hoc
analysis of complicated univariate GFs, which provides results
sometimes and no insight.
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Possible future work

I Higher dimensions: d = 3 has been studied empirically by
Bostan, Bousquet-Mélou, Kauers & Melczer. The orbit sum
method appears to work relatively rarely, however.

I Special families in arbitrary dimension: for example, if each
element of S has the same d− 1 axial symmetries, similar
results hold to above (in progress with S. Melczer).

I Random walk variants can be treated by simply scaling the
variables by probabilities. We anticipate few changes to the
overall analysis.

I Walks in a Weyl chamber (Gessel & Zeilberger) yield very
similar generating functions, analysable in the same way.
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Appendix: problems with univariate methods
I When the length GF is D-finite, we could try to compute its

defining ODE and analyse asymptotics using
Birkhoff-Trjitinsky methodology.

I The main difficulty encountered is the connection problem: it
can be surprisingly hard (possibly incomputable in general) to
rigorously express the GF in question as a linear combination
of basis elements produced by the method.

I Ongoing work of Bostan, Chyzak, van Hoeij, Kauers, and
Pech attempts to get around this problem by using creative
telescoping techniques combined with the kernel method to
represent the walk GFs explicitly in terms of hypergeometric
functions.

I Although such a representation should, in principle, allow one
to rigorously determine asymptotics, in practice this depends
on computing hard integrals of hypergeometric functions.
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