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Some general principles of my research

I Follow your interests and have fun: apparently recreational
examples can lead to serious research.

I Axioms are important, and under-used by many. However
economics and social choice may be in danger of overusing
them.

I Worst-case analysis is important, but overused. It gives nice,
clean, but usually rather weak and unrealistic results.

I Average-case analysis is underused. It has its own pitfalls.
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Tradeoffs in social choice

I An axiomatic approach to collective decision-making is
valuable, but it can be excessively limiting.

I Tradeoffs between multiple criteria (e.g. strategyproofness,
efficiency, welfare, simplicity) must be made.

I Axiomatically nice mechanisms often over-optimize a single
criterion, corresponding to extreme points in the “space of
mechanisms”.

I We need to explore the interior of that space.

I Axiomatic approaches use inherently worst case reasoning,
when sometimes the average case is more relevant.
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Strategyproofness

I Compared to many researchers, I am less concerned about
strategyproofness and more about welfare.
I For voting rules, strategyproofness usually leads to

dictatorship, and hence low welfare.
I Other examples: Serial Dictatorship for house allocation

(below) is strategyproof and efficient but sacrifices welfare and
particularly fairness.

I The DA mechanism below for school choice is strategyproof for
students but is known to give lower welfare than IA (Boston)
under a wide variety of scenarios [4, 6] but not all [2].

I Strategic behavior cannot be ignored, but in many situations
(incomplete information, heterogeneous preferences, complex
mechanisms) it happens rarely.

I I concentrate on truthful behavior of agents, hence on
underlying allocation algorithms rather than mechanisms.
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A Christmas party game

I A department Christmas party in 2014: Yankee Swap was
played.

I Each person brings an item and they are placed in a pile.

I One person takes a gift. The others in turn can either take
one from the pile, or steal one from someone else.

I I realized that it was essentially a decentralized allocation
algorithm, and the effort to understand it led to some (IMHO)
important concepts.

I We need rules to prevent infinite cycling. For example, no one
can take a given present again unless the number of presents
in the pile has decreased.
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I Finite sets:
I A — students
I I — seats
I S — schools

where S is simply a partition of I.

I We aim to assign each student to a unique seat (and hence a
unique school).

I Students have strict preferences over schools, but no
preference for seats in a given school.

I Schools have coarse preferences (priority classes) over
students. We typically break ties inside these classes via a
single tiebreaking order common to all schools. This has
welfare consequences [1].
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Connection to other allocation problems

I If we use tiebreakers as above, then each school in fact has a
strict preference order for students (college admissions).

I The special case where each school has only one seat, and
schools have a single priority class, is housing allocation.

I The special case where students have strict preferences over
seats is the marriage problem.

I The most-studied mechanism for housing allocation is Serial
Dictatorship — agents take turns to choose their best
remaining item.

I The most-studied mechanism for the marriage problem is
Gale-Shapley (see DA below).
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Sequential Deferred Acceptance

I At each step an unmatched student a proposes to its highest
ranked admissible school s.

I “Admissible” means that a has not previously proposed to s.

I If s prefers a to some seat occupant b (including the empty
occupant), then s replaces b with a.

I Once no unmatched students remain, we terminate.

I Note that there may be a choice of which b to eject.

I The order of proposals is not important, provided preferences
are all strict.
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Sequential Immediate Acceptance

I Order the students according to the common tiebreaking order
above.

I At each step the top unmatched student a proposes to its
highest ranked admissible school s.

I “Admissible” again means that a has not previously proposed
to s.

I If there is an empty seat then a gets one. Otherwise a goes to
the back of the queue.

I Once no unmatched students remain, we terminate.

I The order of proposals is very important.
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I If there is an empty seat then a gets one. Otherwise, a
approaches schools in decreasing order of preference until
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I Once no unmatched students remain, we terminate.
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IA vs SD

I They seem very similar: agents make proposals in turn, and
assignments are unbreakable.

I The key difference is that they use a different data structure
to control the order of proposals.

I In IA, there is a queue containing unmatched agents.

I In SD, there is a stack.
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A common framework

I The IA and SD algorithms are formally equivalent to a variant
of DA where we allow schools to have fictitious dynamic
preferences and we impose an order on the proposals.

I In each case, instead of a fixed tiebreaker, we declare that
inside each priority class, a student already having a seat is
preferred to any proposing student (“Accept-First” protocol).

I Each school prefers every student already having a seat at the
school to all other students, so proposals are rejected unless
there is an empty seat.

I The only difference is the use of queue or stack to control
proposal order.
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Another dimension: tiebreaking inside priority classes

I Under IA and SD each school rejects proposals if there are no
seats left.

I Instead, we could declare that inside each priority class, a
proposing student is always accepted (“Accept-Last”), and we
eject an already assigned student to make room, if necessary.

I We would still need to specify which student is ejected. A
common tiebreak order for all schools is one way.

I This gives two more algorithms analogous to IA and SD, one
using a queue and one a stack.

I We have incorporated the stealing aspect of Yankee Swap.
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Another dimension: temporary memory

I So far we have not fully incorporated Yankee Swap into this
framework.

I All algorithms so far have permanent memory. That is, each
agent can propose to each school at most once.

I We can relax this to allow temporary memory: the memory of
each school to be reset each time the total number of
assigned students increases. This allows seat-stealing.

I A school s is now admissible for a if a has not applied to s
since the last reset.

I This gives 4 new algorithms, so 8 in total.

I We label them by memory (P/T), tiebreak policy (F/L) and
data structure (Q/S). Here PFS is SD, PFQ is the Boston
mechanism, TLS is Yankee Swap. Try TFS as a party game
and let the youngest go last!
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Example (Housing allocation for simplicity)

Agents 1, 2, 3 have preferences a � b � c � d and agent 4 has
b � a � c � d.

Algorithm Allocation Ranks Number of proposals

PFS 1 : a, 2 : b, 3 : c, 4 : d (1,2,3,4) 10
PFQ 1 : a, 2 : c, 3 : d, 4 : b (1,3,4,1) 9
PLS 1 : d, 2 : c, 3 : a, 4 : b (4,3,1,1) 9
PLQ 1 : d, 2 : c, 3 : b, 4 : a (4,3,2,2) 10
TFS 1 : d, 2 : a, 3 : c, 4 : b (4,1,3,1) 15
TFQ 1 : a, 2 : b, 3 : d, 4 : c (1,2,4,3) 33
TLS 1 : b, 2 : a, 3 : d, 4 : c (2,1,4,3) 16
TLQ 1 : a, 2 : b, 3 : d, 4 : c (1,2,4,3) 21



Summary of properties

I The “F” algorithms are student-efficient, and the “L” ones are
not.

I Running TTC on the output of the “L” algorithms yields
somewhat better welfare than the “F” ones.

I The “Q” algorithms seem much fairer to those later in the
tiebreak order than the “S” ones. They can also be
implemented using rounds with simultaneous proposals.

I The “T” algorithms seem a little better than the “P” ones in
terms of utilitarian welfare and justified envy. They take
longer to run, but still low degree polynomial time.
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Order symmetry

I We define order symmetry, an average-case fairness concept
in this ordinal setting: each agent has equal chance of getting
their first choice, equal chance of their second item, etc.

I Let P be a probability measure on preferences. An assignment
algorithm is order symmetric with respect to P if the expected
rank distribution matrix with respect to P has all rows equal.

I This is a concept of fairness at a point in time after the roles
of the agents in the algorithm have been determined but
before preferences are known.

I Define order bias (with respect to a given scoring rule) to be
the difference between maximum and minimum expected
utility.

I For example, for SD in the housing allocation setup, the first
agent always gets their top choice and the last has to take
whatever is left, so order bias is (almost) the average score.
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Fate of the first and last agent, n = 64, 6 schools



Order bias for same data using common linear utilities
(Borda rule)



Utilitarian welfare (house allocation, n = 20, Mallows 0.6)



Further developments

I Freeman, Pritchard & Wilson have formalized order bias and
order symmetry [3].

I Pritchard & Wilson have derived asymptotic results for
Boston in the housing allocation model [5].

I Independently, Zick (2022) has used the Yankee Swap idea
(with a priority queue to order the proposals) for university
course allocation, and it seems very promising.

I There are still many adaptations we could make to the above
algorithms.

I We have not yet studied the effect of randomizing the original
order, or done a really thorough simulation analysis, or looked
at real data.
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Takeaways

I We have a unified presentation of a family of algorithms
including known ones that were not connected before.

I The idea of fictitious dynamic preferences systematically
connects one-sided and two-sided matching, and also school
choice. This may allow more interesting algorithms to be
discovered.

I We should investigate far more social choice mechanisms than
we have been doing. Having a greater stock of simply
described algorithms allows more flexibility.

I Interesting research can come from any application, and we
should be on the lookout.

I Simple concrete examples can lead to important theoretical
concepts (we think order symmetry is such a concept).
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