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Overview

Logic, linear equations and inequalities, combinatorics and probability
are the main mathematical tools used in this area. The history is
interesting too. Very suitable topic for high school students wanting
extension.

Choosing a single alternative as a group requires aggregating
individual preferences.

There are many methods for doing this, and some can lead to very
paradoxical outcomes, many of them connected to other areas such as
statistics.

Choosing a representative parliament can also lead to weird
outcomes, in particular power imbalances between parties.
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Choosing a single option

Example: the voting rule matters

A group of 11 people votes to decide whether to go to an Indian,
Thai or Mexican restaurant. The preferences are as follows:

3 people: prefer Indian to Thai and Thai to Mexican, written
I � T �M
2 people: I �M � T
2 people: T �M � I
4 people: M � T � I

5 people like Indian most: under the plurality rule, I wins.

However 6 people like Indian least, so perhaps we want to allow people
to choose which type they don’t want. Under the veto rule, T wins.

However, Mexican has substantial support, so perhaps we should
award points to each type, say 2, 1, 0 in order of preference. Under
the Borda rule, M wins.
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Choosing a single option

Some voting rules

Plurality rule: give one vote to one candidate; highest total wins.

Borda rule: rank candidates and give 0 to lowest, 1 to next, . . . ;
highest total wins.

Antiplurality (veto) rule: give −1 vote to one candidate; highest total
wins.

Approval voting: give 1 to some candidates, 0 to others.

Instant runoff: rank candidates; repeatedly eliminate candidate with
lowest number of first places (in our previous example, Mexican wins).

Copeland rule: compare candidates pairwise as in a tournament; a
beats b if a majority of voters prefer a over b; highest total wins.
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Choosing a single option Paradoxes

Majority rule: Condorcet paradox

Majority rule is the obvious, and only seriously used, method when
choosing between 2 candidates.

Consider an election with 3 candidates a, b, c, with preferences as
follows. 1 voter: a � b � c; 1 voter: b � c � a; 1 voter: c � a � b
Then a majority of voters prefer a to b, but also a majority prefer b to
c and a majority prefer c to a (a Condorcet cycle).

Thus there is no way of choosing a unique winner using only the
majority relation (assuming all candidates have the same a priori
status). The Condorcet winner does not exist.

We can find a decision by voting on 2 candidates at a time, but the
result depends on the order we choose (common source of dirty tricks
in parliamentary settings).

What should be “the” winner here?
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Choosing a single option Paradoxes

Non-monotonicity: no-show paradox

Consider an election with 3 candidates a, b, c and the following
distribution of preferences: 417 voters have abc, 82 acb, 143 bac, 357
bca, 285 cab, 324 cba.

Under instant runoff, a is eliminated first, and then b wins.

However if 2 more voters show up and vote abc, then b is eliminated
first, and c wins. Note that c is the last choice of the new voters, who
would do better to stay at home!

Furthermore b is the Condorcet winner, but c is the Condorcet loser.

It has been proved that every Condorcet method (one that elects the
Condorcet winner whenever it exists) is vulnerable to this effect.
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Choosing a single option Paradoxes

Quantifying paradoxes

We can describe most outcomes with linear equations and inequalities.

Let xp be the fraction of voters having preference order p. A
Condorcet cycle (3 candidates) occurs if and only if the following
system of equations and inequalities has a solution.

xabc + xacb + xbac + xbca + xcab + xcba = 1

xabc + xacb + xcab > xbac + xbca + xcba

xbca + xbac + xabc > xcba + xcab + xacb

xcab + xcba + xbca > xacb + xabc + xbac

xabc, xacb, xbac, xbca, xcab, xcba ≥ 0

We can use this to compute the probability of such a paradox
occurring, for reasonably nice distributions of preferences.
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Choosing a single option Paradoxes

Strategy: Gibbard-Satterthwaite theorem

An election instance consists of a finite set of candidates and a finite
set of voters such that each voter has a complete strict preference
ordering of the candidates.

A social choice function assigns a unique winner to each election
instance.

Theorem: Every social choice function that is not a dictatorship
allows strategic voting in some election instance when the number of
candidates is at least 3 and the number of voters at least 2.

Note that if we allow ties to be unbroken, we could always elect all
candidates. So there is a tradeoff between decisiveness and the
various types of non-paradoxical behaviour that we instinctively desire.
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Choosing a single option Paradoxes

Which method is best?

Obviously this depends on the criteria (“axioms”) which one thinks
are most important, because no voting method can satisfy all the
various criteria advanced in the literature, as we have seen.

Some methods fail many more criteria than others. Social choice
theorists are united in saying that plurality, despite being used in most
real-world elections, is the worst of the commonly advocated
methods. Its main positive feature is simplicity.

Popular methods among theorists are approval voting, Borda’s rule,
and some Condorcet consistent rules.
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History

Early researchers

Ramon Llull: 13th century Majorcan philosopher and Christian
missionary. Precursor of Leibniz in logic. Suggested Copeland voting
rule centuries before Copeland.

Nicholas of Cusa: 15th century German polymath and Christian
cardinal. Suggested Borda rule centuries before Borda.

Jean-Charles de Borda: 18th century French military engineer and
naval commander. Fought in US Revolutionary War. Standardized
the metre, commanded Navy vessels. Introduced Borda rule for
French Academy of Sciences.

Marie Jean Antoine Nicolas de Caritat, marquis de Condorcet: 18th
century French philosopher and mathematician. Championed use of
pairwise voting. Active in progressive and revolutionary politics, and
served in National Assembly. Died mysteriously in prison during the
Reign of Terror.
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History

Pictures of early researchers
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Representative democracy

Weighted voting games

If we assume bloc voting (strict party discipline), each party has a
fixed weight wi equal to its number of seats. There is a fixed quota q
(usually just over half the total size of Parliament) for a bill to pass.
Denote this weighted voting game [q;w1, . . . , wk].

Similar voting setups hold in corporation (weights determined by
amount of stock owned).

All that is important is the list of winning coalitions: those who can
force passage of a bill/motion.
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Representative democracy

Example: NZ Parliament

The current (Oct 2011) Parliament has parties with the following
numbers of MPs by party (including independents): 58, 42, 9, 5, 4, 1,
1, 1, 1.

Assuming no abstentions/absences, a bill will pass if and only if 62
votes are obtained.

There are 11 minimal winning coalitions and 252 winning coalitions
overall.

Note that parties 2-5, and parties 6-9, are equivalent in that they
belong to the same minimal winning coalitions.
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Representative democracy

Example: voting in the EU Council of Ministers

From 1958 to 2003 various weighted voting games occurred.

In first version (Treaty of Rome), game was [12; 4, 4, 4, 2, 2, 1].

Last version (1995–2003) had
[62; 10, 10, 10, 10, 8, 5, 5, 5, 5, 4, 4, 3, 3, 3, 2].

Treaty of Nice (currently in force) uses weights (totalling 345) but
has more conditions. A coalition is winning iff it has at least 50% of
the countries, 74% of the weights, 62% of the population.

Treaty of Lisbon (from 2014): coalition wins iff it has at least 55% of
countries and 65% of population. This method is easily implemented
if new members join, and avoids complex negotiations over weights.
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Representative democracy Allocating the weights

Single winner district systems

Divide electorate into N districts of approximately equal size. Elect
one representative from each district using a social choice function.
No attempt to relate the weights to overall national support.

“First past the post”: plurality rule.

“Alternative vote/Preferential voting”: instant runoff rule.

Could use Borda, ... but almost no one does.

These methods can magnify small margins locally into large margins
globally. For example, under plurality it is possible to have 49.999%
support overall, and win zero districts.
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Representative democracy Allocating the weights

Example: Canadian Federal election, 1993

Used plurality rule for 295 ridings (districts).

The 5 main parties had overall popular votes as follows: Lib 41.24%;
Reform 18.69%; PC 16.04%; BQ 13.52%; NDP 6.88%.

The seat distribution in Parliament: Lib 177; Ref 52; PC 2; BQ 54;
NDP 9; Independent 1.

Not only is seat distribution not an increasing function of popular
vote, there are some huge disproportionalities. Every party other than
Lib belongs to no minimal winning coalitions: Lib is a dictator.
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Representative democracy Allocating the weights

Proportional systems

The idea is to allocate parties seats in Parliament in proportion to
their national (plurality) support level. Many countries (such as NZ)
adopt variants of this idea.

The apportionment problem: given a fixed size N of Parliament, how
to allocate seats to parties as proportionally as possible, given that we
must use an integer number of seats?

At least 5 methods have been suggested. They have all been used in
the context of allocating states numbers of representatives to the US
Congress, and in other contexts. Some have alternative names, e.g.
Webster method is equivalent to St Lagüe method used for MMP in
NZ.
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Representative democracy Allocating the weights

Apportionment methods

Compute the average number of voters per seat, D (not an integer in
general).

Let vi be the number of voters for party i. Compute the standard
allocation vi/D.

Then:

Hamilton Assign party i the rounded down value bvi/Dc. Allocate remaining
seats in descending order of the fraction discarded.

Jefferson Assign party i the rounded down value bvi/Dc. If this allocates
correctly, stop. Otherwise repeat with a larger divisor D′ and repeat
until it works.

Adams Same as Jefferson, but round up instead of down.
Webster Same as Jefferson, but round to nearest integer.

Hill Same as Webster, but round using geometric mean instead of
arithmetic.
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Representative democracy Allocating the weights

Example

Suppose 3 parties A,B,C with votes 657000, 237000, 106000
respectively, and 100 seats to distribute.

Here D = 10000 and the standard allocations 65.7, 23.7, 10.6.

Hamilton and Jefferson give 66, 24, 10; Adams, Webster, Hill
65, 24, 11.

Repeat with 660000, 245100, 104900: Hamilton gives 65, 24, 11.

Repeat with house size 101: Hamilton gives 66, 25, 10.

Hamilton’s method can allow the Alabama paradox and population
paradox.
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Repeat with 660000, 245100, 104900: Hamilton gives 65, 24, 11.

Repeat with house size 101: Hamilton gives 66, 25, 10.

Hamilton’s method can allow the Alabama paradox and population
paradox.
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Representative democracy Allocating the weights

Paradoxes of apportionment

Alabama paradox: increasing N (all vi fixed) causes a party to lose a
seat.

Population paradox: increasing vi (D fixed) causes party i to lose a
seat.

Quota violation: sum of seats of parties does not equal N .

Hamilton suffers from Alabama and Population paradox (see above
example); others can violate quota.

Finding paradoxical situations systematically is again a matter of
solving equations and inequalities.

Theorem (Balinski and Young): at least one paradox is unavoidable.
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Representative democracy Power versus weight

Power and weight are not the same

Even if no party has an absolute majority, it is possible for a player to
have nonzero weight and yet belong to no minimal winning coalitions.
Example: Luxembourg in EU Council of Ministers under Treaty of
Rome.

It seems reasonable to assume that such a dummy player should have
no power.

Several numerical measures of power have been proposed. None are
without controversy. The most famous are the Shapley-Shubik index
and the Banzhaf index.

Most but not all indices assign more power to those with larger
weight.
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Representative democracy Power versus weight

Decisiveness (individual)

A player i is decisive for coalition S if S wins with i but not without
i. A dummy is never decisive.

The basic idea of most power indices is to measure how often each
player is decisive. “How often” contains an implicit probability
distribution.

The Banzhaf measure is the probability that i is decisive for a
uniformly randomly chosen coalition containing i.

This measure was discovered first by Penrose and rediscovered by
Banzhaf (1965) in the context of a court case over the Nassau
County Board of Supervisors (weighted voting game [16; 9, 9, 7, 3, 1, 1]
- spot the dummies).
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Representative democracy Power versus weight

Decisiveness (collective)

A collective decisiveness measure should measure the overall ability of
the system to form a winning coalition.

Example: Coleman (1971) introduced the measure C = |W |/2n, the
probability that a uniformly chosen random coalition is winning. The
basic model is of each voter deciding Yes or No independently with
probability 1/2.

Example: EUCM under Treaty of Nice has C ≈ 0.02. Very hard to
pass any motion, hence the need for reform in Treaty of Lisbon
(which currently has C ≈ 0.13).
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Representative democracy Power versus weight

NZ Parliament example revisited

Power vector for Shapley-Shubik:
σ = (0.611, 0.090, 0.090.0.090, 0.090, 0.008, 0.008, 0.008, 0.008).

(Normalized) power vector for Banzhaf:
β = (0.657, 0.074, 0.074.0.074.0.074, 0.011, 0.011, 0.011, 0.011).

In reality not all coalitions of a given size are equally likely. However
with almost any power index, it is clear that the largest party has very
large power.

Coleman index: C = 0.492. This is large.
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Representative democracy Power versus weight

More recent researchers

Lionel Penrose: British geneticist. All 4 children became academics:
Jonathan (psychology; 10 times British Chess Champion), Roger
(theoretical physics, Oxford), Oliver (theoretical physics,
Heriot-Watt), Shirley (cancer genetics, London).

John J. Banzhaf III: American lawyer. Famous for public interest
lawsuits (weighted voting, tobacco companies, copyrighting computer
programs, potty parity, . . . ).

Lloyd Shapley: American game theorist (Stanford University). Son of
Harlow Shapley, famous astronomer.

Martin Shubik: American economist (Yale University).
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Representative democracy Power versus weight

Pictures of more recent researchers
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2011 Referendum

2011 Referendum

On 26/11/2011 an indicative referendum will be held under the
Electoral Referendum Act 2010, with two questions:

Q1: Do you want to keep the current MMP system?
Q2: If NZ decides to change from MMP, which of the following would
you prefer most? First Past the Post (FPP); Preferential Vote (PV);
Single Transferable Vote (STV); Supplementary Member (SM).

If Q1 is approved by majority, a review of MMP will be undertaken in
2012, with some minimum terms of reference already specified. If Q1
is not approved, Parliament will consider a possible referendum on a
change to the plurality winner of Q2, by 2014.

http://www.referendum.org.nz/ contains much information
about the various systems, much of it purely qualitative.
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2011 Referendum

Electoral Referendum Act constraints

All 5 systems must be compared assuming a 120-seat Parliament.

No changes to Maori or South Island electorate seat distribution
principles.

SM will have 90 electorate and 30 list seats.

(not a hard constraint) Under STV, “It is likely the 120 MPs would
be divided between 24 and 30 electorates, each with 3 to 7 MPs.”
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2011 Referendum

Insights from what we know so far

Almost anything paradoxical CAN happen in some circumstances.
There is no perfect system, and it is a matter of optimization with
respect to whichever criteria we find important.

The various single winner district systems are unlikely to produce very
different seat allocations.

There is a very large difference in the proportionality of the various
systems.

Comparing power distribution of parties under each system is
important, not just seat allocations.
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2011 Referendum

Electoral system simulator

The Electoral Commission site makes several claims about the likely
performance of the referendum alternatives.

Geoffrey Pritchard and I created a web-based simulator to allow users
to evaluate the seat distribution under the 5 systems, in any
user-supplied polling scenario.

Many statistical assumptions must be made: downscaling to
electorates, inferring preference orders from plurality polling data,
drawing new electorate boundaries, . . . . We used a lot of real data
and all assumptions are explained.

Try it out!
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2011 Referendum

Useful references

Chaotic Elections - A Mathematician Looks at Voting by Donald
Saari (American Math Society)

The Mathematics of Voting and Elections - A Hands-On Approach by
J. Hodge and R. Klima (American Math Society)

American Math Society Feature column on apportionment
(www.ams.org/samplings/feature-column/fcarc-apportion1)

Our web-based simulator (www.stat.auckland.ac.nz/˜geoff/voting/)
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