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Basic setup

TU games

I A transferable utility (TU) game G = (X, v) is specified by a
finite set X (the players) and a characteristic function
v : 2X → R.

I Usually, v(∅) = 0 is required - we do here.

I For each S ⊆ X, v(S) is supposed to represent the total
payoff to the coalition S.

I Notation:

I G: collection of all TU games - a real vector space
I G(X): collection of all TU games with underlying set X - a

real vector space
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Basic setup

Simple games

I A simple game is a TU game with v(S) ∈ {0, 1} for all
S ⊆ X.

I Alternatively, it can be specified by X and the set of winning
coalitions, W := {S ⊆ X | v(S) = 1}.

I Often, ∅ 6∈W is required - we do here. Often W 6= ∅ is
required - we don’t.

I Notation:

I SG: collection of all simple games - a lattice
I SG(X): collection of all simple games with underlying set X -

a lattice
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Basic setup

Key motivating examples of simple games

I Unanimity games: choose S ⊆ X and let v(T ) = 1 if and only
if S ⊆ T . Every member of S has a veto.

I Weighted majority games [q;w1, w2, . . . wn]. Player i has
weight wi; choose a quota q and let v(S) = 1 iff∑

i∈S wi ≥ q. Used to model yes-no voting in committees.
Examples: stockholder elections, EU Council of Ministers,
ordinary majority voting in Parliament.

I Disequilibrium games: for a given noncooperative game and
fixed profile of actions, declare a subset to be winning if is a
witness to the profile not being a strong Nash equilibrium.
Examples: voting rules with the sincere profile.
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Basic setup

Basic concepts of TU games and simple games

monotonicity S ⊆ T =⇒ v(S) ≤ v(T ).

dummy i ∈ X is a dummy if for all S ⊆ X,
v(S) = v(S \ {i}).

proper simple game S ∈W,T ∈W =⇒ S ∩ T 6= ∅.

We usually assume monotonicity for simple games, in which case
we need only specify the minimal winning coalitions in order to
specify the game. A dummy is not an element of any minimal
winning coalition.
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Basic setup

Example: voting in the EU Council of Ministers
I From 1958 to 2003 various weighted majority games were

used. Such games are proper if the quota is large enough
(more than half the sum of all weights).

I In first version (Treaty of Rome), game was [12; 4, 4, 4, 2, 2, 1].
Luxembourg was a dummy!

I Last version (1995–2003) had
[62; 10, 10, 10, 10, 8, 5, 5, 5, 5, 4, 4, 3, 3, 3, 2].

I Treaty of Nice (currently in force) uses weights (totalling 345)
but has more conditions. A coalition is winning iff it has at
least 50% of the countries, 74% of the weights, 62% of the
population.

I Treaty of Lisbon (from 2014): coalition wins iff it has at least
55% of countries and 65% of population. This method is
easily implemented if new members join, and avoids complex
negotiations over weights.
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Values

Efficient values

I We seek an allocation rule that will distribute the total value
of the grand coalition X among the players. An allocation is a
function giving a real number for each element of X.

I An efficient value is a function ξ that does this: it takes every
TU game to an allocation, such that the individual payouts
(denoted ξi(G)) have sum v(X).

I Some basic desirable properties are:

Anonymity each player’s payout depends only on their
contribution, not the player name;

Linearity aξi((X, v1)) + bξi((X, v2)) = ξ(X, av1 + bv2).
Positivity ξi(G) ≥ 0 if G is monotone;

Dummy ξi(G) = 0 if i is a dummy in G.
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Values

The Shapley value

I Shapley proved that there is a unique efficient value satisfying
Anonymity, Dummy and Linearity. Explicitly it is given by

σi(G) =
1

n!

∑
S⊆X

(n− |S|)!(|S| − 1)! [v(S)− v(S \ {i})] .

I This can be interpreted in terms of a coalition-formation or
bargaining model, not without controversy.

I The idea is to consider all possible orders of players with equal
probability, and give player i its expected marginal
contribution.
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Values

Beyond efficiency
I Values satisfying Anonymity, Dummy, Positivity and Linearity

are called semivalues.

I Dubey, Neyman and Weber (1981) showed that a function is
a semivalue if and only if it has the form

ξi(G) =
n∑

k=0

p(n, k)
∑

|S|=k,S⊆X

[v(S)− v(S \ {i})]

where p(n, k) ≥ 0 and the following identities hold∑
k

(
n− 1

k − 1

)
p(n, k) = 1

p(n, k) = p(n− 1, k − 1)− p(n, k − 1)

I If all p(n, k) 6= 0, the semivalue is called regular.
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Values

Semivalues

I ξi(G) represents the expected marginal contribution of player
i if all coalitions of size k are equally likely to contain i and
p(n, k) is the probability that i is in a given coalition of size k.

I A semivalue is uniquely determined by its value on unanimity
games. For example σi(S) = 1/|S| for the unanimity game
determined by S. In particular, a dictator has value 1.

I The only efficient semivalue is the Shapley value.

I Regular semivalues satisfy Young sensibility: if the marginal
contribution to each S is strictly higher in one game than
another, then the ξi have the same relation.

I The class of probabilistic values is even more general - the
coefficients p can depend on S and not just on |S|.
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contribution to each S is strictly higher in one game than
another, then the ξi have the same relation.

I The class of probabilistic values is even more general - the
coefficients p can depend on S and not just on |S|.
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Values

Some explicit semivalues
I (binomial (for fixed p ∈ [0, 1]))

βpi (G) =

n∑
k=1

pk(1− p)n−1−k
∑
|S|=k

[v(S)− v(S \ {i})] .

I (Banzhaf (binomial with p = 1/2))

βi(G) = 21−n
∑
S⊆X

[v(S)− v(S \ {i})] .

I (dictatorial)
δi(G) = v({i}).

I (Shapley)

σi(G) =
∑
k≥1

1

k
(
n
k

) ∑
|S|=k,S⊆X

[v(S)− v(S \ {i})] .

I
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Values

Potential

Potential

I Mas-Colell and Hart (1988) introduced the idea of potential,
borrowed from physics.

I Let ξ be a value. A potential for ξ is a mapping Φ : G → R
such that

Φ(G)− Φ(G−{i}) = ξi(G)

for all G = (X, v) ∈ G such that X 6= ∅. Here G−{i} is the
game with player set X \ {i} and the same v.

I The initial condition Φ(∅, v) = 0 is usually assumed.

I There is a unique efficient value having a potential function,
and it is the Shapley value. Explicitly, the potential looks like

Φ(G) =
∑
k

1

k
(
n
k

) ∑
|S|=k,S⊆X

v(S).
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Values

Potential

Potential without efficiency

I Calvo and Santos (2000) described exactly which values
possess a potential function.

I The answer: ξ has a potential if and only if it satisfies
Myerson’s balanced contributions axiom:

ξi(G)− ξi(G \ {j}) = ξj(G)− ξj(G \ {i})

and if and only if it is path-independent.

I In particular, every semivalue has a potential function.
Explicitly:

Φ(G) =
∑
k

p(n, k)
∑
|S|=k

v(S)

the expected value of a coalition chosen randomly according
to the weights p(n, k).
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Power

Measuring power in simple games

I There is a long theory of power in voting games (more
generally, simple games). One strand goes back to Banzhaf
(1965) and earlier, Penrose (1946).

I Shapley and Shubik (1954) used the Shapley value as a
measure of power.

I The underlying idea is to measure the extent to which a player
is important for winning coalitions. A key observation is that
for weighted majority games, the relative power of the players
can vary dramatically from the relative weights.

I Much has been written, but no standard definition of a power
measure/index has been agreed. There are many conceptual
confusions in the literature and some controversy.
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Power

Concepts of power in simple games

I Felsenthal and Machover: there are at least two kinds of
“power” and previous authors have conflated them. P-power
deals with distribution of the spoils of power; I-power deals
with decisiveness. The former may not be well-defined, but
the latter is. The former is always relative, but the latter is
absolute.

I Laruelle and Valenciano: there are at least two kinds of
situation, and previous authors have conflated them. Take it
or leave it committees must only vote; pure bargaining
committees involve complex negotiations. In the first case,
decisiveness is not as important as “success”. P-power in fact
is related to decisiveness via bargaining committees.
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Power

Decisiveness

Decisiveness (individual)

I A player i is decisive for coalition S if S wins with i but not
without i. In other words, the marginal contribution
v(S)− v(S \ {i}) is 1.

I The basic idea of I-power is to measure how often each player
is decisive.

I The most common measure is the Banzhaf measure, the
specialization of the Banzhaf semivalue: the probability that i
is decisive for a uniformly randomly chosen coalition
containing i.

I This measure was discovered first for simple games by Penrose
and rediscovered by Banzhaf (1965) in the context of a court
case over the Nassau County Board of Supervisors (weighted
voting game [16; 9, 9, 7, 3, 1, 1]).
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Power

Decisiveness

Decisiveness (collective)

I A collective decisiveness measure should measure the overall
ability of the system to form a winning coalition. We could try
to axiomatize it.

I Example: Coleman (1971) introduced the measure
C = |W |/2n, the probability that a uniformly chosen random
coalition is winning. The basic model is of each voter deciding
Yes or No independently with probability 1/2.

I Again, no standard definition/axioms exist. Note that C could
be generalized to TU games: 2−n

∑
S v(S).

I Example: EUCM under Treaty of Nice has C ≈ 0.02. Very
hard to pass any motion, hence the need for reform in Treaty
of Lisbon (which currently has C ≈ 0.13).
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Power

Decisiveness

From individual to collective decisiveness

I Observation: the Coleman measure is essentially the potential
function for the Banzhaf measure.

I Idea: define a collective decisiveness measure to be the
potential function of an individual decisiveness measure. At
least now we only have to define one of them! This means
that any individual decisiveness measure must satisfy the
balanced contributions axiom.

I Idea: define an individual decisiveness measure to be the
restriction of a semivalue to SG. Note: such functions satisfy
Anonymity, Positivity, Dummy, and Modularity (the
replacement for Linearity).
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Power

Decisiveness

NZ Parliament

I The current (May 2011) Parliament has parties with the
following numbers of MPs by party (including independents):
58, 42, 9, 5, 4, 1, 1, 1, 1.

I Assuming no abstentions/absences, a bill will pass if and only
if 62 votes are obtained. Under strict party discipline (bloc
voting):

I There are 11 minimal winning coalitions and 252 winning
coalitions overall. Note that parties 2-5, and parties 6-9, are
equivalent.

I Power vector for Shapley-Shubik: σ =
(0.611, 0.090, 0.090.0.090, 0.090, 0.008, 0.008, 0.008, 0.008).

I (Normalized) power vector for Banzhaf: β =
(0.657, 0.074, 0.074.0.074.0.074, 0.011, 0.011, 0.011, 0.011).

I Coleman index: C = 0.492.
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Power

Decisiveness

My interpretation: power measures

I Define an individual power measure to be a regular semivalue
on the class of simple games and a collective power measure
to be the potential function.

I There are many possible measures (semivalues). Which one to
use should be dictated by the specifics of the situation being
modelled.

I Efficiency is an obvious requirement if a fixed prize is being
divided, and this usually leads to the Shapley value
(Shapley-Shubik index). Otherwise efficiency is meaningless
and should be dropped.

I Collective decisiveness certainly is important, so individual
power measures do measure something important, even if it is
not “power”.
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and should be dropped.

I Collective decisiveness certainly is important, so individual
power measures do measure something important, even if it is
not “power”.

Mark C. Wilson



Application to manipulation measures

Manipulation and query model

I The simple game describing manipulability can have no
winning coalitions. It can have several conflicting coalitions
which intersect. It can have conflicting coalitions that do not
intersect. More complicated than the yes-no voting examples.

I Consider a simple query model: we interview voters
sequentially at random. At each step we determine their
preference order and determine whether we have already
found enough voters to form a winning coalition.

I Let Q be the expected number of queries required. Then
n+ 1−Q is essentially the potential of the Shapley value of
the manipulation game.

I If each voter can have a different cost to recruit (as in
bribery), a TU (cost) game is more appropriate than a simple
game, but similar ideas should work.

Mark C. Wilson
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Application to manipulation measures

Manipulability measures
I Gibbard-Satterthwaite theorem (1973–75) implies that every

social choice function (voting rule with all ties resolved) allows
a nonempty simple manipulation game for some profile
(configuration of preferences).

I Idea: use collective decisiveness measure on the associated
manipulation game to measure the ease of manipulation of a
given profile.

I This is a substantial advance in the theory of measures of
manipulability. There has been no definition of what such a
measure should be, and no desirable axioms listed. Previous
measures have been rather crude.

I Some (not all) of the previously used measures can be
interpreted as semivalues, but not always regular ones. Our
new approach allows a principled choice of measure for a
given situation.

Mark C. Wilson



Application to manipulation measures

Manipulability measures
I Gibbard-Satterthwaite theorem (1973–75) implies that every

social choice function (voting rule with all ties resolved) allows
a nonempty simple manipulation game for some profile
(configuration of preferences).

I Idea: use collective decisiveness measure on the associated
manipulation game to measure the ease of manipulation of a
given profile.

I This is a substantial advance in the theory of measures of
manipulability. There has been no definition of what such a
measure should be, and no desirable axioms listed. Previous
measures have been rather crude.

I Some (not all) of the previously used measures can be
interpreted as semivalues, but not always regular ones. Our
new approach allows a principled choice of measure for a
given situation.

Mark C. Wilson



Application to manipulation measures

Manipulability measures
I Gibbard-Satterthwaite theorem (1973–75) implies that every

social choice function (voting rule with all ties resolved) allows
a nonempty simple manipulation game for some profile
(configuration of preferences).

I Idea: use collective decisiveness measure on the associated
manipulation game to measure the ease of manipulation of a
given profile.

I This is a substantial advance in the theory of measures of
manipulability. There has been no definition of what such a
measure should be, and no desirable axioms listed. Previous
measures have been rather crude.

I Some (not all) of the previously used measures can be
interpreted as semivalues, but not always regular ones. Our
new approach allows a principled choice of measure for a
given situation.

Mark C. Wilson



Application to manipulation measures

Manipulability measures
I Gibbard-Satterthwaite theorem (1973–75) implies that every

social choice function (voting rule with all ties resolved) allows
a nonempty simple manipulation game for some profile
(configuration of preferences).

I Idea: use collective decisiveness measure on the associated
manipulation game to measure the ease of manipulation of a
given profile.

I This is a substantial advance in the theory of measures of
manipulability. There has been no definition of what such a
measure should be, and no desirable axioms listed. Previous
measures have been rather crude.

I Some (not all) of the previously used measures can be
interpreted as semivalues, but not always regular ones. Our
new approach allows a principled choice of measure for a
given situation.

Mark C. Wilson



Application to manipulation measures

Manipulability example

I Consider a voting situation with 3 candidates, where there are
3 voters with sincere preference order abc, 2 with bca, 2 with
cba. Voting rule is plurality, with random tiebreaking.

I Assuming risk-neutral voters, there are two types of minimal
winning coalitions: a single cba (respectively bca) votes for b
(respectively c). Note that this game is not strong.

I The winning coalitions are those containing at least one bca
or cba. The Coleman index is 15/16. The relative Banzhaf (or
Shapley-Shubik) index of each cba or bca is 1/4, and abc
voters are dummies.

Mark C. Wilson
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