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Basic setup

We have a set C of alternatives (candidates) and set V of
voters, with m := |C|, n := |V|.
Each voter v submits a permutation L(v) of the candidates.
This defines the set T of types, and |T | = m!.

A profile is a function V → T . A voting situation is a multiset
from T with total weight n.

The scoring rule determined by a vector w with
w1 ≥ w2 ≥ · · · ≥ wm−1 ≥ wm assigns the score

|c| :=
∑
t∈T
|{v ∈ V | L(v) = t}|wL(v)−1(c).

Special cases:
plurality: w = (1, 0, 0, . . . , 0);
antiplurality (veto): w = (1, 1, . . . , 1, 0);
Borda: w = (m− 1,m− 2, . . . , 1, 0).
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Voting games

Player (voter) action is to submit an expressed vote (possibly
different from its sincere preference).

Gibbard-Satterthwaite and other theorems show that
dominant strategies don’t always exist.

Far too many Nash equilibria exist for this to be a useful
concept, so refinements are probably needed.

Meir, Polukarov, Jennings, Rosenschein (AAAI 2010) studied
best-reply dynamics (BRD).

If BRD converges, it necessarily finds a Nash equilibrium.

Mark C. Wilson
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Summary of our recent activity in this area

Repeated polling (Reyhaneh Reyhani: well developed,
relations to STV, Duverger’s law - not today).

Best reply dynamics of plurality games (Reyhaneh Reyhani:
preliminary, today).

Sequential/strategic entry (Ben Skudder: very preliminary, not
today).
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Summary of Meir et al

Assumptions:
Fixed assumptions: myopic, no communication between
players and zero knowledge of others.
Other assumptions:

Behaviour : best reply at each step or arbitrary improvement
step.
Indifference: keep last move or report sincere preference.
Initial state: sincere profile or arbitrary profile.
Tiebreaking: deterministic or uniform random.
Voters: unweighted or weighted.

Results:
Convergence for plurality under red hypotheses in at most
m2n2 steps. Also, deterministic tiebreaking from an arbitrary
initial state converges for unweighted voters. The winner is the
sincere winner or a candidate at most 1 point behind initially.

In each case, changing each red hypothesis and keeping the others
yields examples of non-convergence.
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Our aims

Consider best-reply dynamics for more general voting rules
(scoring rules). Restrict to sincere initial state, unweighted
voters, keep last move if no improvement possible.

Conjecture and prove general positive results, where possible.
Otherwise clearly explain the negative results.

Use best-reply dynamics to refine equilibria (better predictive
value) and measure manipulability.

Have done preliminary simulation results for several rules
including Borda, 2-approval, antiplurality.

Mark C. Wilson
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A basic issue

Best reply is not unique, because several preference orders
may yield the same result.

Traditional game-theoretic idea is to randomize, and use
mixed strategies.

However we often avoid random tiebreaking because we want
a deterministic voting rule, so we may wish to restrict to pure
strategies.

One option is to use a fixed enumeration of the preference
orders, and choose the one with smallest index among all
actions giving the best result.

Example: abc, acb, bac, bca, cab, cba, standard lexicographic
order.

Mark C. Wilson
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Cycles

Example

Consider P=(abc, bca) and voting rule Borda, so sincere scoreboard
is (2, 3, 1) and sincere winner b. Best reply of voter 1 is acb,
giving 3-way tie. Under alphabetical tie breaking, the winner is a.
Player 2 changes to cba and the winner switches from a to c.
We list the current state P after each number of stages (stage i is
the list of ith moves of all players).
0 P = (abc, bac) S(P ) = (2, 3, 1)
1 P = (acb, cba) S(P ) = (2, 1, 3)
2 P = (abc, bac) S(P ) = (2, 3, 1)

Mark C. Wilson
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Order of players matters

Example

Consider P = (acb, acb, cab, cba) under Borda.
0 P = (acb, acb, cab, cba) S(P ) = (5, 1, 6)
1 P = (abc, acb, cba, cba) S(P ) = (4, 3, 5)
2 P = (abc, abc, cba, bac) S(P ) = (4, 5, 3)
3 P = (acb, abc, cba, cba) S(P ) = (4, 3, 5)
4 P = (abc, abc, cba, bac) S(P ) = (4, 5, 3)
A cycle of length 2 has been reached.
Consider another profile for the same voting situation,
P ′ = (acb, acb, cab, cba). We obtain:
0 P = (acb, acb, cba, cab) S(P ) = (5, 1, 6)
1 P = (abc, acb, cba, cba) S(P ) = (4, 3, 5)
2 P = (abc, abc, bca, cab) S(P ) = (5, 4, 3)
3 P = (abc, abc, bca, cab) S(P ) = (5, 4, 3)
In this case, convergence has occurred.

Mark C. Wilson
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Best reply is not unique, and choices matter

Example

Consider the scoring rule (3, 2, 0) and sincere profile
P = (acb, acb, bca), using mixed strategies.
0 P = (acb, acb, bca) S(P ) = (6, 3, 6)
1 P = (acb, acb, cba) S(P ) = (6, 2, 7)
2 P = (bac, acb, bac) S(P ) = (5, 6, 4)
3 P = (acb, acb, cba) S(P ) = (6, 2, 7)
4 P = (bac, acb, bac) S(P ) = (5, 6, 4)
5 P = (acb, acb, cba) S(P ) = (6, 2, 7)
6 P = (abc, acb, cba) S(P ) = (6, 4, 5)
7 P = (abc, acb, cba) S(P ) = (6, 4, 5)
However, we reach the same equilibrium after 3 iterations using
our pure strategy algorithm, omitting stages 2 to 5.

Mark C. Wilson
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Pure vs mixed strategies

It may take longer to converge when using mixed strategies
(infinitely often, as previous example shows). This is
intuitively clear.

Conversely, mixed strategies sometimes allow quicker
convergence than pure ones. This seems less obvious.

Example: m = n = 4, Borda, initial state
(abcd, abcd, bacd, bdca) does not converge using our pure
strategy setup, but does using mixed strategies.

Mark C. Wilson
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Other topics

It seems more realistic in some interpretations to start from a
zero initial state, rather than assuming all voters first vote
once. This doesn’t seem to affect results much but needs
more exploration, because the first player has more influence.

The set of possible winners is larger for Borda - a candidate
can be more than 1 point behind initially and still win.

If only k voters play this game and the other n− k always
vote sincerely, similar results appear.

Mark C. Wilson
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Conjectures and facts

BRD always converges for antiplurality. The upper bound on
number of iterations is more than for plurality.

BRD always converges for m = n = 3, for some class of rules
including Borda, but not all rules. For other values of m and
n, the class does not include Borda.

BRD converges in (m− 1)n steps from the sincere initial
state, for plurality.

Given an initial voting situation, for all representing profiles for
which BRD converges, the equilibrium strategies are the same
(up to permutation of voters), hence the winner is the same.
However, the rate of convergence depends on the profile.

Mark C. Wilson
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which BRD converges, the equilibrium strategies are the same
(up to permutation of voters), hence the winner is the same.
However, the rate of convergence depends on the profile.
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Conjectures

Speculations

How does convergence of BRD relate to difficulty of
manipulation of a voting rule?
For example, suppose the sincere initial state is an equilibrium.
Then convergence is immediate, and by usual definitions the
rule is not (individually) manipulable at that profile.
On the other hand, if convergence is slow or cycling occurs, it
seems reasonable to assume that manipulation is
computationally hard.
The concepts of counterthreat and reaction of Pattanaik may
be given a clearer motivation via this model.
Each Nash equilibrium occurs as a limit of best-reply
dynamics, but some may be more stable than others, and
have larger basins of attraction. Does this lead to a
probability distribution on the equilibria, which may be useful
for prediction or welfare comparisons?

Mark C. Wilson



Outline
New phenomena for scoring rules

Conjectures

Speculations

How does convergence of BRD relate to difficulty of
manipulation of a voting rule?
For example, suppose the sincere initial state is an equilibrium.
Then convergence is immediate, and by usual definitions the
rule is not (individually) manipulable at that profile.
On the other hand, if convergence is slow or cycling occurs, it
seems reasonable to assume that manipulation is
computationally hard.
The concepts of counterthreat and reaction of Pattanaik may
be given a clearer motivation via this model.
Each Nash equilibrium occurs as a limit of best-reply
dynamics, but some may be more stable than others, and
have larger basins of attraction. Does this lead to a
probability distribution on the equilibria, which may be useful
for prediction or welfare comparisons?

Mark C. Wilson



Outline
New phenomena for scoring rules

Conjectures

Speculations

How does convergence of BRD relate to difficulty of
manipulation of a voting rule?
For example, suppose the sincere initial state is an equilibrium.
Then convergence is immediate, and by usual definitions the
rule is not (individually) manipulable at that profile.
On the other hand, if convergence is slow or cycling occurs, it
seems reasonable to assume that manipulation is
computationally hard.
The concepts of counterthreat and reaction of Pattanaik may
be given a clearer motivation via this model.
Each Nash equilibrium occurs as a limit of best-reply
dynamics, but some may be more stable than others, and
have larger basins of attraction. Does this lead to a
probability distribution on the equilibria, which may be useful
for prediction or welfare comparisons?

Mark C. Wilson



Outline
New phenomena for scoring rules

Conjectures

Speculations

How does convergence of BRD relate to difficulty of
manipulation of a voting rule?
For example, suppose the sincere initial state is an equilibrium.
Then convergence is immediate, and by usual definitions the
rule is not (individually) manipulable at that profile.
On the other hand, if convergence is slow or cycling occurs, it
seems reasonable to assume that manipulation is
computationally hard.
The concepts of counterthreat and reaction of Pattanaik may
be given a clearer motivation via this model.
Each Nash equilibrium occurs as a limit of best-reply
dynamics, but some may be more stable than others, and
have larger basins of attraction. Does this lead to a
probability distribution on the equilibria, which may be useful
for prediction or welfare comparisons?

Mark C. Wilson



Outline
New phenomena for scoring rules

Conjectures

Speculations

How does convergence of BRD relate to difficulty of
manipulation of a voting rule?
For example, suppose the sincere initial state is an equilibrium.
Then convergence is immediate, and by usual definitions the
rule is not (individually) manipulable at that profile.
On the other hand, if convergence is slow or cycling occurs, it
seems reasonable to assume that manipulation is
computationally hard.
The concepts of counterthreat and reaction of Pattanaik may
be given a clearer motivation via this model.
Each Nash equilibrium occurs as a limit of best-reply
dynamics, but some may be more stable than others, and
have larger basins of attraction. Does this lead to a
probability distribution on the equilibria, which may be useful
for prediction or welfare comparisons?

Mark C. Wilson


	Outline
	New phenomena for scoring rules
	Conjectures

