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Preliminaries

Basic setup

I A set C of alternatives (candidates) of size m, and a set V of
voters, of size n.

I Each voter v has a type (sincere preference) and submits an
expressed preference. These are permutations Lv of the
candidates.

I A profile is a function V → T . A voting situation is a multiset
from T with total weight n.

I The positional scoring rule determined by a vector w with
w1 ≥ w2 ≥ · · · ≥ wm−1 ≥ wm assigns the usual score

|c| :=
∑
t∈T
|{v ∈ V | Lv = t}|wL−1

v (c).

I In this talk tiebreaking is mostly not relevant, so we ignore it
completely.
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Preliminaries

Manipulation

I Standard social choice definition: a voter expresses an
insincere preference to achieve a better outcome than
otherwise, assuming other voters vote sincerely. This is
individual manipulation.

I Coalitional manipulation occurs when a subset X of V all
simultaneously adopt the above strategy. Their expressed
preferences need not be the same, nor their sincere
preferences. However all must (weakly) prefer the new
outcome to the sincere one.

I There is no claim that such strategic voting will take place,
just that there is incentive to consider it.
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Preliminaries

Difficulties with coalitional manipulation

I How do coalition members identify each other?

I How do coalition members communicate?

I How do coalition members compute their joint strategy?

I How do coalition members enforce the strategy?
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Safe manipulation

The concept of safe manipulation

I A voter of type t (the leader) announces that (s)he will in fact
express the preference t′.

I We assume that only voters of type t hear this message, and
other voters vote sincerely. The type t voters can either vote
as t or t′. Let x denote the number who switch to t′.

I The announced vote is safe if for all x, the outcome is never
worse for these voters. In particular this applies to the
maximal manipulation, where all voters of type t switch. Note
that a voter who ranks the sincere winner lowest can never
vote unsafely.

I If in addition there is some x for which the outcome is better
for these voters, the profile is safely manipulable by type t in
direction t′.
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Safe manipulation

Safe manipulation nonexample

I Let m = 5 and use w = (55, 39, 33, 21, 0). Suppose that there
are 3 voters of each possible type, and 1 extra voter of type
12345. The sincere winner is alternative 1.

I If 1 type 53124 voter votes instead as 35241, alternative 2
wins; if 2 switch, alternative 3 wins; if 3 switch, alternative 4
wins.

I Thus such voters can both undershoot and overshoot in the
same profile.
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Safe manipulation

Previous work

I Slinko and White showed that the analogue of the
Gibbard-Satterthwaite theorem holds for safe manipulation.
They asked about the probability that safe manipulation
would succeed.

I Hazon and Elkind studied the complexity of safe manipulation
(COMSOC 2010, Tuesday). Their main relevant results:

I The results are strongly determined by the complexity of the
tiebreaking algorithm.

I (IsSafe) Given t, t′, and an anonymous rule, it is decidable in
polynomial time whether safe manipulation is possible.

I (ExistsSafe) Given t, for a few common rules it is decidable in
polynomial time whether safe manipulation is possible.
Otherwise the answer is unknown.
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Safe manipulation

Our goals for scoring rules

I Give efficient algorithms for solving the IsSafe and ExistsSafe
problems.

I Characterize those situations that are safely manipulable.

I Compute the (exact limiting, as n→∞) probability that a
voting situation is safely manipulable, under the uniform
distribution (IAC). The limiting probability of a tie is zero, so
we can ignore tiebreaking.

I Let St,t′ denote the set of situations safely manipulable by
switching from t to t′. We seek the size of the union

S :=
⋃
t∈T

St :=
⋃
t∈T

t6=t′∈T

St,t′ .
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Algorithms for positional scoring rules

Basic observations for positional scoring rules

I Let a be the sincere winner. Call candidates preferred over a
by t good and those ranked below a bad. Manipulation is safe
iff bad candidate never wins for any value of x, good
candidate wins for some x.

I Let |c|(x) denote the score of c when x voters of type t switch
to t′. This extends to real values of x in the obvious way. The
graphs x 7→ |c|(x) are straight lines (the score lines).
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Algorithms for positional scoring rules

Algorithm for positional scoring rules, I

I Fix t and t′ and let 0 ≤ x ≤ |Vt|. Define

G(x) = max{|c|(x) | c is good }
B(x) = max{|c|(x) | c is bad }
U(x) = |c|(x),where c is the sincere winner.

I Compute the ordered list I := {i1, i2, . . . , iN := |Vt|} of
intersections of the score lines. Initialize k := 1 and then loop
through values of k:

I let qk := dike; if qk ≥ ik+1 then go to start of loop;
I check the inequalities: B(qk) > max{G(qk), U(qk)} and

G(qk) > U(qk). If first inequality holds, return SAFE = false;
if second holds, return MANIP = true.

I This determines whether a given situation belongs to St,t′ .
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Algorithms for positional scoring rules

Algorithm for positional scoring rules, II

I I has size O(m2), and we simulate the voting rule once for
each element of I. Each simulation requires O(m)
comparisons and m score updates each of which requires O(1)
arithmetic operations on numbers of size n.

I The algorithm simplifies greatly when m = 3: safe
manipulation is possible if and only if the maximal
manipulation elects a good candidate.

I We now have a characterization of manipulable situations by
linear (in)equalities.

Mark C. Wilson
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Algorithms for positional scoring rules

Algorithm for positional scoring rules, III

I To compute S, we have some simplifications:

I St is empty if there are no good candidates (also if the top
element of t has the lowest score, and the next element of t is
the sincere winner);

I We need only consider t′ for which all good candidates are
ranked ahead of all bad ones and the sincere winner.

I We then use inclusion-exclusion.

I This is very probably super-exponential in m, but polynomial
in n.

Mark C. Wilson
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Algorithms for positional scoring rules

IAC computations via polytopes

I The scores are all linear functions of the variables xt, where xt
denotes the number of voters of type t.

I The inequalities above define a polytope nP with dimension
m!, lying in the simplex nS := {x |

∑
t xt = n,∀t xt ≥ 0}.

The intersection of two St corresponds to the polytope with
the union of constraints.

I Under IAC, the probability distribution is uniform on S, so
probabilities reduce to counting lattice points in the polytope.

I The asymptotic leading term of the probability equals the
volume of the normalized polytope P divided by that for S.
Such volumes can be computed by publicly available software
implementing standard algorithms.

Mark C. Wilson
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Algorithms for positional scoring rules

Linear system example: Borda, m = 3

I Suppose that the sincere election result is |a| > |b| ≥ |c|, and
we take t = cba, t′ = bca. Order the types
abc, acb, bac, bca, cab, cba and let ni be the size of Vi.

I Let |a|′ denote a’s score after a strategic attempt as above,
etc. Then the attempt is successful if and only if
|b|′ ≥ |a|′, |c|′. We can express |a|′, etc, as a linear
combination of the ni. This yields ni ≥ 0,

∑
i ni = n, and

0 ≤ n1 + n2 − n3 − n4

0 ≤ n3 + n4 − n5 − n6

0 ≤ −n1 − n2 + n3 + n4 + n6

0 ≤ −n1 − n2 + 2n3 + 2n4 − n5 + 2n2.
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Algorithms for positional scoring rules

Numerical results for m = 3

Table: Asymptotic probability under IAC of a situation being (safely)
manipulable.

scoring rule P(manip) P(safely) P (safely | manip)

Plurality 0.292 0.292 1.00

(3,1,0) 0.422 0.322 0.76

Borda 0.502 0.347 0.69

(3,2,0) 0.535 0.330 0.62

(10,9,0) 0.533 0.264 0.49

Antiplurality 0.525 0.222 0.42
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Further discussion

Discussion of results

I The ordering of rules according to their asymptotic
susceptibility to manipulation is different when we restrict to
safe manipulation.

I The asymptotic conditional probability of being safely
manipulable given manipulable decreases as the weight given
to the second ranked alternative increases.
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Further discussion

Extensions

I It seems natural to consider the uniform distribution on
profiles (IC). However we don’t expect this to be interesting
for positional scoring rules, at least for large n. Reason: with
high probability the differences in candidate scores are of order√
n but the number of voters of each type is of order n. Thus

some types of votes will be safe almost always, other types
almost never.

I Is there a polynomial time algorithm for ExistsSafe, for a
general positional scoring rule? We know there is one for easy
rules like plurality and antiplurality. What about Borda?
(Recent: Egor Ianovski appears to have solved this).

I What happens when we extend to coalitional manipulation, or
some intermediate model?
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Further discussion

Game interpretation

I Let M denote the potential manipulators in a voting
situation. The voting rule defines a game form and the given
profile an ordinal game with set of players M. Assume that
all players have complete information.

I For ordinary manipulation, M = V. A profile is individually
(coalitionally) manipulable if and only if it is not a Nash
(strong Nash) equilibrium.

I For safe manipulation, M = Vt for some fixed t. Suppose
that t and t′ are specified. The players in M have a unique
dominant strategy in a given profile (“all switch to t′”) if and
only if the profile is safely manipulable.

I What happens in other cases? What do symmetric (mixed)
Nash equilibria look like? What if we only want safety with
high probability?
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