The probability of safe manipulation

Mark C. Wilson
www.cs.auckland.ac.nz/~mcw/blog/
(joint with Reyhaneh Reyhani)
Department of Computer Science
University of Auckland

COMSOC, Düsseldorf, 2010-09-16

Preliminaries

Safe manipulation

Algorithms for positional scoring rules

Further discussion

- Outline

What Google thinks this talk is about

AnalogHacking - Safe manipulation software for safe technicians Analog hacking offers free software for safe technicians to learn manipulation as well as other ls and a blog about how lock picking and safe analoghacking.com/ - Cached-Simiar

Safe-cracking - Lock manipulation
A selection of articles related to Safe-cracking - Lock manipulation
www.experiencefestival.com/safo-cracking_-_lock_manipulation - United States
Cached-Simiar
Poff Safecracking for the computer scientist
e Format: PDF/Adobe Acrobat - Quick View
21 Dec $2004 \ldots$... is usually called manipulation within the safe and vault trade, although, as we will later see, the techniques.
www.cryplo.com/papers/safolocks.pdt - Simiar
Joint Manipulation: Is it safe?
4 posts - 3 authors
Sports Injury and Treaiment Advice - Increase your strength speed and stamina for free at the amazing new Peak Performance sports sclence Library. www-pponline co.uk , Articles - Cached - Similar
[porn Guidance for the Safe Teaching of Manipulation to Clinical ... e Frmat PDF/Adobe Acrobat - Quick View
14 BEDFORD ROW, LONDON, WC1R 4ED TEL 0207306 6666. FAX 02073066611

Mark C. Wilson

Basic setup

- A set \mathcal{C} of alternatives (candidates) of size m, and a set \mathcal{V} of voters, of size n.

Basic setup

- A set \mathcal{C} of alternatives (candidates) of size m, and a set \mathcal{V} of voters, of size n.
- Each voter v has a type (sincere preference) and submits an expressed preference. These are permutations L_{v} of the candidates.

Basic setup

- A set \mathcal{C} of alternatives (candidates) of size m, and a set \mathcal{V} of voters, of size n.
- Each voter v has a type (sincere preference) and submits an expressed preference. These are permutations L_{v} of the candidates.
- A profile is a function $\mathcal{V} \rightarrow \mathcal{T}$. A voting situation is a multiset from \mathcal{T} with total weight n.

Basic setup

- A set \mathcal{C} of alternatives (candidates) of size m, and a set \mathcal{V} of voters, of size n.
- Each voter v has a type (sincere preference) and submits an expressed preference. These are permutations L_{v} of the candidates.
- A profile is a function $\mathcal{V} \rightarrow \mathcal{T}$. A voting situation is a multiset from \mathcal{T} with total weight n.
- The positional scoring rule determined by a vector w with $w_{1} \geq w_{2} \geq \cdots \geq w_{m-1} \geq w_{m}$ assigns the usual score

$$
|c|:=\sum_{t \in \mathcal{T}}\left|\left\{v \in \mathcal{V} \mid L_{v}=t\right\}\right| w_{L_{v}^{-1}(c)}
$$

Basic setup

- A set \mathcal{C} of alternatives (candidates) of size m, and a set \mathcal{V} of voters, of size n.
- Each voter v has a type (sincere preference) and submits an expressed preference. These are permutations L_{v} of the candidates.
- A profile is a function $\mathcal{V} \rightarrow \mathcal{T}$. A voting situation is a multiset from \mathcal{T} with total weight n.
- The positional scoring rule determined by a vector w with $w_{1} \geq w_{2} \geq \cdots \geq w_{m-1} \geq w_{m}$ assigns the usual score

$$
|c|:=\sum_{t \in \mathcal{T}}\left|\left\{v \in \mathcal{V} \mid L_{v}=t\right\}\right| w_{L_{v}^{-1}(c)}
$$

- In this talk tiebreaking is mostly not relevant, so we ignore it completely.

Manipulation

- Standard social choice definition: a voter expresses an insincere preference to achieve a better outcome than otherwise, assuming other voters vote sincerely. This is individual manipulation.

Manipulation

- Standard social choice definition: a voter expresses an insincere preference to achieve a better outcome than otherwise, assuming other voters vote sincerely. This is individual manipulation.
- Coalitional manipulation occurs when a subset X of \mathcal{V} all simultaneously adopt the above strategy. Their expressed preferences need not be the same, nor their sincere preferences. However all must (weakly) prefer the new outcome to the sincere one.

Manipulation

- Standard social choice definition: a voter expresses an insincere preference to achieve a better outcome than otherwise, assuming other voters vote sincerely. This is individual manipulation.
- Coalitional manipulation occurs when a subset X of \mathcal{V} all simultaneously adopt the above strategy. Their expressed preferences need not be the same, nor their sincere preferences. However all must (weakly) prefer the new outcome to the sincere one.
- There is no claim that such strategic voting will take place, just that there is incentive to consider it.

Difficulties with coalitional manipulation

- How do coalition members identify each other?

Difficulties with coalitional manipulation

- How do coalition members identify each other?
- How do coalition members communicate?

Difficulties with coalitional manipulation

- How do coalition members identify each other?
- How do coalition members communicate?
- How do coalition members compute their joint strategy?

Difficulties with coalitional manipulation

- How do coalition members identify each other?
- How do coalition members communicate?
- How do coalition members compute their joint strategy?
- How do coalition members enforce the strategy?

The concept of safe manipulation

- A voter of type t (the leader) announces that (s)he will in fact express the preference t^{\prime}.

The concept of safe manipulation

- A voter of type t (the leader) announces that (s)he will in fact express the preference t^{\prime}.
- We assume that only voters of type t hear this message, and other voters vote sincerely. The type t voters can either vote as t or t^{\prime}. Let x denote the number who switch to t^{\prime}.

The concept of safe manipulation

- A voter of type t (the leader) announces that (s)he will in fact express the preference t^{\prime}.
- We assume that only voters of type t hear this message, and other voters vote sincerely. The type t voters can either vote as t or t^{\prime}. Let x denote the number who switch to t^{\prime}.
- The announced vote is safe if for all x, the outcome is never worse for these voters. In particular this applies to the maximal manipulation, where all voters of type t switch. Note that a voter who ranks the sincere winner lowest can never vote unsafely.

The concept of safe manipulation

- A voter of type t (the leader) announces that (s)he will in fact express the preference t^{\prime}.
- We assume that only voters of type t hear this message, and other voters vote sincerely. The type t voters can either vote as t or t^{\prime}. Let x denote the number who switch to t^{\prime}.
- The announced vote is safe if for all x, the outcome is never worse for these voters. In particular this applies to the maximal manipulation, where all voters of type t switch. Note that a voter who ranks the sincere winner lowest can never vote unsafely.
- If in addition there is some x for which the outcome is better for these voters, the profile is safely manipulable by type t in direction t^{\prime}.

Safe manipulation nonexample

- Let $m=5$ and use $w=(55,39,33,21,0)$. Suppose that there are 3 voters of each possible type, and 1 extra voter of type 12345 . The sincere winner is alternative 1 .

Safe manipulation nonexample

- Let $m=5$ and use $w=(55,39,33,21,0)$. Suppose that there are 3 voters of each possible type, and 1 extra voter of type 12345 . The sincere winner is alternative 1.
- If 1 type 53124 voter votes instead as 35241 , alternative 2 wins; if 2 switch, alternative 3 wins; if 3 switch, alternative 4 wins.

Safe manipulation nonexample

- Let $m=5$ and use $w=(55,39,33,21,0)$. Suppose that there are 3 voters of each possible type, and 1 extra voter of type 12345. The sincere winner is alternative 1.
- If 1 type 53124 voter votes instead as 35241 , alternative 2 wins; if 2 switch, alternative 3 wins; if 3 switch, alternative 4 wins.
- Thus such voters can both undershoot and overshoot in the same profile.

Previous work

- Slinko and White showed that the analogue of the Gibbard-Satterthwaite theorem holds for safe manipulation. They asked about the probability that safe manipulation would succeed.

Previous work

- Slinko and White showed that the analogue of the Gibbard-Satterthwaite theorem holds for safe manipulation. They asked about the probability that safe manipulation would succeed.
- Hazon and Elkind studied the complexity of safe manipulation (COMSOC 2010, Tuesday). Their main relevant results:

Previous work

- Slinko and White showed that the analogue of the Gibbard-Satterthwaite theorem holds for safe manipulation. They asked about the probability that safe manipulation would succeed.
- Hazon and Elkind studied the complexity of safe manipulation (COMSOC 2010, Tuesday). Their main relevant results:
- The results are strongly determined by the complexity of the tiebreaking algorithm.

Previous work

－Slinko and White showed that the analogue of the Gibbard－Satterthwaite theorem holds for safe manipulation． They asked about the probability that safe manipulation would succeed．
－Hazon and Elkind studied the complexity of safe manipulation （COMSOC 2010，Tuesday）．Their main relevant results：
－The results are strongly determined by the complexity of the tiebreaking algorithm．
－（IsSafe）Given t, t^{\prime} ，and an anonymous rule，it is decidable in polynomial time whether safe manipulation is possible．

The University of Aucklanc
EV ZEALAND三 \quad のの

Previous work

- Slinko and White showed that the analogue of the Gibbard-Satterthwaite theorem holds for safe manipulation. They asked about the probability that safe manipulation would succeed.
- Hazon and Elkind studied the complexity of safe manipulation (COMSOC 2010, Tuesday). Their main relevant results:
- The results are strongly determined by the complexity of the tiebreaking algorithm.
- (IsSafe) Given t, t^{\prime}, and an anonymous rule, it is decidable in polynomial time whether safe manipulation is possible.
- (ExistsSafe) Given t, for a few common rules it is decidable in polynomial time whether safe manipulation is possible. Otherwise the answer is unknown.

Our goals for scoring rules

- Give efficient algorithms for solving the IsSafe and ExistsSafe problems.

Our goals for scoring rules

- Give efficient algorithms for solving the IsSafe and ExistsSafe problems.
- Characterize those situations that are safely manipulable.

Our goals for scoring rules

- Give efficient algorithms for solving the IsSafe and ExistsSafe problems.
- Characterize those situations that are safely manipulable.
- Compute the (exact limiting, as $n \rightarrow \infty$) probability that a voting situation is safely manipulable, under the uniform distribution (IAC). The limiting probability of a tie is zero, so we can ignore tiebreaking.

Our goals for scoring rules

- Give efficient algorithms for solving the IsSafe and ExistsSafe problems.
- Characterize those situations that are safely manipulable.
- Compute the (exact limiting, as $n \rightarrow \infty$) probability that a voting situation is safely manipulable, under the uniform distribution (IAC). The limiting probability of a tie is zero, so we can ignore tiebreaking.
- Let $S_{t, t^{\prime}}$ denote the set of situations safely manipulable by switching from t to t^{\prime}. We seek the size of the union

$$
S:=\bigcup_{t \in \mathcal{T}} S_{t}:=\bigcup_{\substack{t \in \mathcal{T} \\ t \neq t^{\prime} \in \mathcal{T}}} S_{t, t^{\prime}}
$$

Basic observations for positional scoring rules

- Let a be the sincere winner. Call candidates preferred over a by t good and those ranked below a bad. Manipulation is safe iff bad candidate never wins for any value of x, good candidate wins for some x.

Basic observations for positional scoring rules

- Let a be the sincere winner. Call candidates preferred over a by t good and those ranked below a bad. Manipulation is safe iff bad candidate never wins for any value of x, good candidate wins for some x.
- Let $|c|(x)$ denote the score of c when x voters of type t switch to t^{\prime}. This extends to real values of x in the obvious way. The graphs $x \mapsto|c|(x)$ are straight lines (the score lines).

Algorithm for positional scoring rules, I

- Fix t and t^{\prime} and let $0 \leq x \leq\left|\mathcal{V}_{t}\right|$. Define

$$
\begin{aligned}
& G(x)=\max \{|c|(x) \mid c \text { is good }\} \\
& B(x)=\max \{|c|(x) \mid c \text { is bad }\} \\
& U(x)=|c|(x), \text { where } c \text { is the sincere winner. }
\end{aligned}
$$

Algorithm for positional scoring rules, I

- Fix t and t^{\prime} and let $0 \leq x \leq\left|\mathcal{V}_{t}\right|$. Define

$$
\begin{aligned}
& G(x)=\max \{|c|(x) \mid c \text { is good }\} \\
& B(x)=\max \{|c|(x) \mid c \text { is bad }\} \\
& U(x)=|c|(x), \text { where } c \text { is the sincere winner. }
\end{aligned}
$$

- Compute the ordered list $I:=\left\{i_{1}, i_{2}, \ldots, i_{N}:=\left|\mathcal{V}_{t}\right|\right\}$ of intersections of the score lines. Initialize $k:=1$ and then loop through values of k :

Algorithm for positional scoring rules, I

- Fix t and t^{\prime} and let $0 \leq x \leq\left|\mathcal{V}_{t}\right|$. Define

$$
\begin{aligned}
& G(x)=\max \{|c|(x) \mid c \text { is good }\} \\
& B(x)=\max \{|c|(x) \mid c \text { is bad }\} \\
& U(x)=|c|(x), \text { where } c \text { is the sincere winner. }
\end{aligned}
$$

- Compute the ordered list $I:=\left\{i_{1}, i_{2}, \ldots, i_{N}:=\left|\mathcal{V}_{t}\right|\right\}$ of intersections of the score lines. Initialize $k:=1$ and then loop through values of k :
- let $q_{k}:=\left\lceil i_{k}\right\rceil$; if $q_{k} \geq i_{k+1}$ then go to start of loop;

Algorithm for positional scoring rules, I

- Fix t and t^{\prime} and let $0 \leq x \leq\left|\mathcal{V}_{t}\right|$. Define

$$
\begin{aligned}
& G(x)=\max \{|c|(x) \mid c \text { is good }\} \\
& B(x)=\max \{|c|(x) \mid c \text { is bad }\} \\
& U(x)=|c|(x), \text { where } c \text { is the sincere winner. }
\end{aligned}
$$

- Compute the ordered list $I:=\left\{i_{1}, i_{2}, \ldots, i_{N}:=\left|\mathcal{V}_{t}\right|\right\}$ of intersections of the score lines. Initialize $k:=1$ and then loop through values of k :
- let $q_{k}:=\left\lceil i_{k}\right\rceil$; if $q_{k} \geq i_{k+1}$ then go to start of loop;
- check the inequalities: $B\left(q_{k}\right)>\max \left\{G\left(q_{k}\right), U\left(q_{k}\right)\right\}$ and $G\left(q_{k}\right)>U\left(q_{k}\right)$. If first inequality holds, return SAFE $=$ false; if second holds, return MANIP $=$ true.

Algorithm for positional scoring rules, I

- Fix t and t^{\prime} and let $0 \leq x \leq\left|\mathcal{V}_{t}\right|$. Define

$$
\begin{aligned}
& G(x)=\max \{|c|(x) \mid c \text { is good }\} \\
& B(x)=\max \{|c|(x) \mid c \text { is bad }\} \\
& U(x)=|c|(x), \text { where } c \text { is the sincere winner. }
\end{aligned}
$$

- Compute the ordered list $I:=\left\{i_{1}, i_{2}, \ldots, i_{N}:=\left|\mathcal{V}_{t}\right|\right\}$ of intersections of the score lines. Initialize $k:=1$ and then loop through values of k :
- let $q_{k}:=\left\lceil i_{k}\right\rceil$; if $q_{k} \geq i_{k+1}$ then go to start of loop;
- check the inequalities: $B\left(q_{k}\right)>\max \left\{G\left(q_{k}\right), U\left(q_{k}\right)\right\}$ and $G\left(q_{k}\right)>U\left(q_{k}\right)$. If first inequality holds, return SAFE $=$ false; if second holds, return MANIP = true.
- This determines whether a given situation belongs to $S_{t, t}$

Algorithm for positional scoring rules, II

- I has size $O\left(m^{2}\right)$, and we simulate the voting rule once for each element of I. Each simulation requires $O(m)$ comparisons and m score updates each of which requires $O(1)$ arithmetic operations on numbers of size n.

Algorithm for positional scoring rules, II

- I has size $O\left(m^{2}\right)$, and we simulate the voting rule once for each element of I. Each simulation requires $O(m)$ comparisons and m score updates each of which requires $O(1)$ arithmetic operations on numbers of size n.
- The algorithm simplifies greatly when $m=3$: safe manipulation is possible if and only if the maximal manipulation elects a good candidate.

Algorithm for positional scoring rules, II

- I has size $O\left(m^{2}\right)$, and we simulate the voting rule once for each element of I. Each simulation requires $O(m)$ comparisons and m score updates each of which requires $O(1)$ arithmetic operations on numbers of size n.
- The algorithm simplifies greatly when $m=3$: safe manipulation is possible if and only if the maximal manipulation elects a good candidate.
- We now have a characterization of manipulable situations by linear (in)equalities.

Algorithm for positional scoring rules, III

- To compute S, we have some simplifications:

Algorithm for positional scoring rules, III

- To compute S, we have some simplifications:
- S_{t} is empty if there are no good candidates (also if the top element of t has the lowest score, and the next element of t is the sincere winner);

Algorithm for positional scoring rules, III

- To compute S, we have some simplifications:
- S_{t} is empty if there are no good candidates (also if the top element of t has the lowest score, and the next element of t is the sincere winner);
- We need only consider t^{\prime} for which all good candidates are ranked ahead of all bad ones and the sincere winner.

Algorithm for positional scoring rules，III

－To compute S ，we have some simplifications：
－S_{t} is empty if there are no good candidates（also if the top element of t has the lowest score，and the next element of t is the sincere winner）；
－We need only consider t^{\prime} for which all good candidates are ranked ahead of all bad ones and the sincere winner．
－We then use inclusion－exclusion． ミ \quad 引のく

Algorithm for positional scoring rules，III

－To compute S ，we have some simplifications：
－S_{t} is empty if there are no good candidates（also if the top element of t has the lowest score，and the next element of t is the sincere winner）；
－We need only consider t^{\prime} for which all good candidates are ranked ahead of all bad ones and the sincere winner．
－We then use inclusion－exclusion．
－This is very probably super－exponential in m ，but polynomial in n ．

IAC computations via polytopes

- The scores are all linear functions of the variables x_{t}, where x_{t} denotes the number of voters of type t.

IAC computations via polytopes

- The scores are all linear functions of the variables x_{t}, where x_{t} denotes the number of voters of type t.
- The inequalities above define a polytope $n \mathbb{P}$ with dimension $m!$, lying in the simplex $n \mathbb{S}:=\left\{x \mid \sum_{t} x_{t}=n, \forall t x_{t} \geq 0\right\}$. The intersection of two S_{t} corresponds to the polytope with the union of constraints.

IAC computations via polytopes

－The scores are all linear functions of the variables x_{t} ，where x_{t} denotes the number of voters of type t ．
－The inequalities above define a polytope $n \mathbb{P}$ with dimension m ！，lying in the simplex $n \mathbb{S}:=\left\{x \mid \sum_{t} x_{t}=n, \forall t x_{t} \geq 0\right\}$ ． The intersection of two S_{t} corresponds to the polytope with the union of constraints．
－Under IAC，the probability distribution is uniform on \mathbb{S} ，so probabilities reduce to counting lattice points in the polytope．

IAC computations via polytopes

- The scores are all linear functions of the variables x_{t}, where x_{t} denotes the number of voters of type t.
- The inequalities above define a polytope $n \mathbb{P}$ with dimension $m!$, lying in the simplex $n \mathbb{S}:=\left\{x \mid \sum_{t} x_{t}=n, \forall t x_{t} \geq 0\right\}$. The intersection of two S_{t} corresponds to the polytope with the union of constraints.
- Under IAC, the probability distribution is uniform on \mathbb{S}, so probabilities reduce to counting lattice points in the polytope.
- The asymptotic leading term of the probability equals the volume of the normalized polytope \mathbb{P} divided by that for \mathbb{S}. Such volumes can be computed by publicly available software implementing standard algorithms.

Linear system example: Borda, $m=3$

- Suppose that the sincere election result is $|a|>|b| \geq|c|$, and we take $t=c b a, t^{\prime}=b c a$. Order the types $a b c, a c b, b a c, b c a, c a b, c b a$ and let n_{i} be the size of \mathcal{V}_{i}.

Linear system example: Borda, $m=3$

- Suppose that the sincere election result is $|a|>|b| \geq|c|$, and we take $t=c b a, t^{\prime}=b c a$. Order the types $a b c, a c b, b a c, b c a, c a b, c b a$ and let n_{i} be the size of \mathcal{V}_{i}.
- Let $|a|^{\prime}$ denote a 's score after a strategic attempt as above, etc. Then the attempt is successful if and only if $|b|^{\prime} \geq|a|^{\prime},|c|^{\prime}$. We can express $|a|^{\prime}$, etc, as a linear combination of the n_{i}. This yields $n_{i} \geq 0, \sum_{i} n_{i}=n$, and

$$
\begin{aligned}
& 0 \leq n_{1}+n_{2}-n_{3}-n_{4} \\
& 0 \leq n_{3}+n_{4}-n_{5}-n_{6} \\
& 0 \leq-n_{1}-n_{2}+n_{3}+n_{4}+n_{6} \\
& 0 \leq-n_{1}-n_{2}+2 n_{3}+2 n_{4}-n_{5}+2 n_{2}
\end{aligned}
$$

Numerical results for $m=3$

Table: Asymptotic probability under IAC of a situation being (safely) manipulable.

scoring rule	P (manip)	P (safely)	P (safely \mid manip)
Plurality	0.292	0.292	1.00
(3,1,0)	0.422	0.322	0.76
Borda	0.502	0.347	0.69
$(3,2,0)$	0.535	0.330	0.62
$(10,9,0)$	0.533	0.264	0.49
Antiplurality	0.525	0.222	0.42

Discussion of results

- The ordering of rules according to their asymptotic susceptibility to manipulation is different when we restrict to safe manipulation.

Discussion of results

- The ordering of rules according to their asymptotic susceptibility to manipulation is different when we restrict to safe manipulation.
- The asymptotic conditional probability of being safely manipulable given manipulable decreases as the weight given to the second ranked alternative increases.

Extensions

- It seems natural to consider the uniform distribution on profiles (IC). However we don't expect this to be interesting for positional scoring rules, at least for large n. Reason: with high probability the differences in candidate scores are of order \sqrt{n} but the number of voters of each type is of order n. Thus some types of votes will be safe almost always, other types almost never.

Extensions

－It seems natural to consider the uniform distribution on profiles（IC）．However we don＇t expect this to be interesting for positional scoring rules，at least for large n ．Reason：with high probability the differences in candidate scores are of order \sqrt{n} but the number of voters of each type is of order n ．Thus some types of votes will be safe almost always，other types almost never．
－Is there a polynomial time algorithm for ExistsSafe，for a general positional scoring rule？We know there is one for easy rules like plurality and antiplurality．What about Borda？ （Recent：Egor lanovski appears to have solved this）．三 \quad 〇Qく

Extensions

－It seems natural to consider the uniform distribution on profiles（IC）．However we don＇t expect this to be interesting for positional scoring rules，at least for large n ．Reason：with high probability the differences in candidate scores are of order \sqrt{n} but the number of voters of each type is of order n ．Thus some types of votes will be safe almost always，other types almost never．
－Is there a polynomial time algorithm for ExistsSafe，for a general positional scoring rule？We know there is one for easy rules like plurality and antiplurality．What about Borda？ （Recent：Egor lanovski appears to have solved this）．
－What happens when we extend to coalitional manipulation，or some intermediate model？

Game interpretation

- Let \mathcal{M} denote the potential manipulators in a voting situation. The voting rule defines a game form and the given profile an ordinal game with set of players \mathcal{M}. Assume that all players have complete information.

Game interpretation

- Let \mathcal{M} denote the potential manipulators in a voting situation. The voting rule defines a game form and the given profile an ordinal game with set of players \mathcal{M}. Assume that all players have complete information.
- For ordinary manipulation, $\mathcal{M}=\mathcal{V}$. A profile is individually (coalitionally) manipulable if and only if it is not a Nash (strong Nash) equilibrium.

Game interpretation

- Let \mathcal{M} denote the potential manipulators in a voting situation. The voting rule defines a game form and the given profile an ordinal game with set of players \mathcal{M}. Assume that all players have complete information.
- For ordinary manipulation, $\mathcal{M}=\mathcal{V}$. A profile is individually (coalitionally) manipulable if and only if it is not a Nash (strong Nash) equilibrium.
- For safe manipulation, $\mathcal{M}=\mathcal{V}_{t}$ for some fixed t. Suppose that t and t^{\prime} are specified. The players in \mathcal{M} have a unique dominant strategy in a given profile ("all switch to $t^{\prime \prime \prime}$) if and only if the profile is safely manipulable.

Game interpretation

- Let \mathcal{M} denote the potential manipulators in a voting situation. The voting rule defines a game form and the given profile an ordinal game with set of players \mathcal{M}. Assume that all players have complete information.
- For ordinary manipulation, $\mathcal{M}=\mathcal{V}$. A profile is individually (coalitionally) manipulable if and only if it is not a Nash (strong Nash) equilibrium.
- For safe manipulation, $\mathcal{M}=\mathcal{V}_{t}$ for some fixed t. Suppose that t and t^{\prime} are specified. The players in \mathcal{M} have a unique dominant strategy in a given profile ("all switch to $t^{\prime \prime \prime}$) if and only if the profile is safely manipulable.
- What happens in other cases? What do symmetric (mixed) Nash equilibria look like? What if we only want safety with high probability?

