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Outline Applications

Motivating example: manipulability

Consider an election with n voters and 3 candidates a, b, c.

There are 6 possible preference orders. Let n1 be the number
preferring a > b > c, . . . , n6 the number with c > b > a.

Suppose that we use a positional voting method such as
plurality rule. Let |a| denote the score of a, etc.

Note that all scores are linear expressions in the ni with
constant coefficients. For plurality we have
|a| = n1 + n2, |b| = n3 + n4, |c| = n5 + n6.

Question: What is the probability that the election is
manipulable by strategic voting, assuming the IAC condition
(all voting situations are equally likely)?
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Outline Applications

Linear system for manipulability

Suppose that the sincere election result is |a| > |b| ≥ |c|, and
we want to manipulate in favour of b. By symmetry we can
reduce to this case, at least asymptotically.

Assuming other voters are naive, an optimal strategy is for
some cba’s (say y) to vote bca.
Let |a|′ denote a’s score after a strategic attempt as above.
Then the attempt is successful if and only if |b|′ > |a|′, |c|′.
We can express |a|′ as a linear combination of the ni and y,
and also eliminate y. This yields ni ≥ 0,

∑
i ni = n, and

0 ≤ n1 + n2 − n3 − n4

0 ≤ n3 + n4 − n5 − n6

0 ≤ −n1 − n2 + n3 + n4 + n6

0 ≤ −n1 − n2 + 2n3 + 2n4 − n5 + 2n2.
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Outline Applications

Counting lattice points in polytopes

The linear system above defines a parametrized rational
convex polytope P (n) of dimension 5 in R6. We want to
count the number of integer lattice points inside P (n).

Such questions have been considered for a long time in social
choice theory. They also occur in many other places: compiler
optimization, contingency tables, representation theory.

For a long time only naive methods were used in SCT:
subdivide the polytope into a union of simpler ones and
compute each piece by multiple summation (very many papers
by Fishburn, Gehrlein, Lepelley).

Only very recently have the modern methods become known
in the social choice community.
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Outline Applications

Some theory of lattice points in polytopes

The fundamental theory was developed in the 1960’s by
Eugène Ehrhart while a lycée teacher.

Let P be a rational convex polytope in Rd and let f(n) be the
number of lattice points in nP . Then

f is a quasipolynomial in n of degree d;
the leading coefficient of f is the same on all congruence
classes, and equals the volume of P ;
the minimal period of f divides the LCM of denominators of
coordinates of vertices of P ;
the generating function F (t) =

∑
n f(n)tn (called the Ehrhart

series) is rational.
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Outline Applications

Some difficulties of computation with polytopes

There are two main ways of specifying a polytope: by
inequalities as above, or by giving its vertices.

Many algorithms require both representations.

Converting between representations can take exponential time.

There can be exponentially many terms in a naive subdivision.

Similar problems occur when computing volume, not just
lattice point computations.
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Outline Applications

Modern algorithms for lattice points

All use a more general representation via rational functions.
We consider the sum F (P ;x) =

∑
α xα where α runs over all

lattice points in P . Putting x = 1 gives the number of lattice
points.

Brion showed that F (P ;x) is the sum over all vertices v of
the analogous series for the supporting cones of P at v.
Barvinok (1994) found a polynomial time algorithm (if the
dimension is fixed) for decomposing these cones into simple
unimodular cones. The decomposition is signed (we subtract
as well as adding — this is the key point).
The series corresponding to a simple unimodular cone is an
easily derived rational function. Thus F (P ;x) is a sum of nice
rational functions.
All the denominators are singular at x = 1 and so we use
residue theory to evaluate the limit F (P ;1).

Mark C. Wilson www.cs.auckland.ac.nz/˜mcw/ (joint work with Geoff Pritchard, UoA Stats)Polytope computations in social choice theory



Outline Applications

Modern algorithms for lattice points

All use a more general representation via rational functions.
We consider the sum F (P ;x) =

∑
α xα where α runs over all

lattice points in P . Putting x = 1 gives the number of lattice
points.
Brion showed that F (P ;x) is the sum over all vertices v of
the analogous series for the supporting cones of P at v.

Barvinok (1994) found a polynomial time algorithm (if the
dimension is fixed) for decomposing these cones into simple
unimodular cones. The decomposition is signed (we subtract
as well as adding — this is the key point).
The series corresponding to a simple unimodular cone is an
easily derived rational function. Thus F (P ;x) is a sum of nice
rational functions.
All the denominators are singular at x = 1 and so we use
residue theory to evaluate the limit F (P ;1).

Mark C. Wilson www.cs.auckland.ac.nz/˜mcw/ (joint work with Geoff Pritchard, UoA Stats)Polytope computations in social choice theory



Outline Applications

Modern algorithms for lattice points

All use a more general representation via rational functions.
We consider the sum F (P ;x) =

∑
α xα where α runs over all

lattice points in P . Putting x = 1 gives the number of lattice
points.
Brion showed that F (P ;x) is the sum over all vertices v of
the analogous series for the supporting cones of P at v.
Barvinok (1994) found a polynomial time algorithm (if the
dimension is fixed) for decomposing these cones into simple
unimodular cones. The decomposition is signed (we subtract
as well as adding — this is the key point).

The series corresponding to a simple unimodular cone is an
easily derived rational function. Thus F (P ;x) is a sum of nice
rational functions.
All the denominators are singular at x = 1 and so we use
residue theory to evaluate the limit F (P ;1).

Mark C. Wilson www.cs.auckland.ac.nz/˜mcw/ (joint work with Geoff Pritchard, UoA Stats)Polytope computations in social choice theory



Outline Applications

Modern algorithms for lattice points

All use a more general representation via rational functions.
We consider the sum F (P ;x) =

∑
α xα where α runs over all

lattice points in P . Putting x = 1 gives the number of lattice
points.
Brion showed that F (P ;x) is the sum over all vertices v of
the analogous series for the supporting cones of P at v.
Barvinok (1994) found a polynomial time algorithm (if the
dimension is fixed) for decomposing these cones into simple
unimodular cones. The decomposition is signed (we subtract
as well as adding — this is the key point).
The series corresponding to a simple unimodular cone is an
easily derived rational function. Thus F (P ;x) is a sum of nice
rational functions.

All the denominators are singular at x = 1 and so we use
residue theory to evaluate the limit F (P ;1).

Mark C. Wilson www.cs.auckland.ac.nz/˜mcw/ (joint work with Geoff Pritchard, UoA Stats)Polytope computations in social choice theory



Outline Applications

Modern algorithms for lattice points

All use a more general representation via rational functions.
We consider the sum F (P ;x) =

∑
α xα where α runs over all

lattice points in P . Putting x = 1 gives the number of lattice
points.
Brion showed that F (P ;x) is the sum over all vertices v of
the analogous series for the supporting cones of P at v.
Barvinok (1994) found a polynomial time algorithm (if the
dimension is fixed) for decomposing these cones into simple
unimodular cones. The decomposition is signed (we subtract
as well as adding — this is the key point).
The series corresponding to a simple unimodular cone is an
easily derived rational function. Thus F (P ;x) is a sum of nice
rational functions.
All the denominators are singular at x = 1 and so we use
residue theory to evaluate the limit F (P ;1).

Mark C. Wilson www.cs.auckland.ac.nz/˜mcw/ (joint work with Geoff Pritchard, UoA Stats)Polytope computations in social choice theory



Outline Applications

Software for lattice point counting

Barvinok’s algorithm was later extended to parametrized
polytopes. This latter algorithm has been implemented in
easily available software LattE by Jésus de Loera and
coworkers.

The software gives the Ehrhart series of a polytope presented
by linear (in)equalities. From that we can determine f(n) by
routine computer algebra once we know the minimal period e.

The problem of determining e is not known to have a
polynomial time algorithm, but this is not an issue in most
applications I have seen.

Other software is available based on similar ideas; this is the
best one I have found.
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Outline Applications

Simple example (nonparametrized)

Let P be the square with vertices
(0, 0), (5000, 0), (0, 5000), (5000, 5000).

Then
∑

α xα has over 25 million monomials.
However it can be written as a nice sum of rational functions:

1

(1− z1)(1− z2)
+

z5000
1

(1− z−1
1 )(1− z2)

+
z5000
2

1− z−1
2 )(1− z1)

+
z5000
1 z5000

2

(1− z−1
1 )(1− z−1

2 )
.

This corresponds to a decomposition of P into so-called
simple unimodular cones at each vertex. The associated
generating function of each cone is rational, and the full one
is the sum of these.
In general there may be exponentially many terms in this
decomposition. Barvinok’s key idea was that we can subtract
as well as adding in our decomposition to do it in polynomial
time.
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Outline Applications

Simple example (nonparametrized)

Let P be the square with vertices
(0, 0), (5000, 0), (0, 5000), (5000, 5000).
Then

∑
α xα has over 25 million monomials.

However it can be written as a nice sum of rational functions:

1

(1− z1)(1− z2)
+

z5000
1

(1− z−1
1 )(1− z2)

+
z5000
2

1− z−1
2 )(1− z1)

+
z5000
1 z5000

2

(1− z−1
1 )(1− z−1

2 )
.

This corresponds to a decomposition of P into so-called
simple unimodular cones at each vertex. The associated
generating function of each cone is rational, and the full one
is the sum of these.
In general there may be exponentially many terms in this
decomposition. Barvinok’s key idea was that we can subtract
as well as adding in our decomposition to do it in polynomial
time.
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Outline Applications

Manipulability of plurality

Polytope has e = m = 12.

Ehrhart series is given by LattE as

12 t12 + 24 t11 + 44 t10 + 56 t9 + 66 t8 + 64 t7 + 63 t6 + 44 t5 + 30 t4 + 14 t3 + 6 t2 + 2 t + 1

(1− t)2 (1− t3)4 (1 + t)4 (1 + t2)3
.

Routine interpolation gives, for example (n ≡ 1 mod 12)

f(n) =
7

17280
n5+

1

108
n4+

341

5184
n3+

5

36
n2− 917

17280
n− 209

1296

Asymptotic answer under IAC for 3 candidates: 7/24 ≈ 0.292.
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Outline Applications

Condorcet paradox

When does there not exist a winner in all pairwise contests?

Easiest to compute the probability that a is the Condorcet
winner, use symmetry and take complement. Polytope is less
complex than last example.

Asymptotic answer under IAC for 3 candidates: 1/16.
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Outline Applications

Manipulability of Borda

Asymptotic answer under IAC for 3 candidates:
132953/264600 ≈ 0.5024678760.

Polytope has m = 2520.

F (t) = P (t)/Q(t) where deg Q = 82, deg P = 75. Suspect
that e = 2520. Finding the quasipolynomial requires
computation of 15120 coefficients, plus interpolation.

Clearly far beyond naive methods, and an open problem until
2006.
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Outline Applications

When all common rules give same election result

For 3-candidate elections, all positional rules agree if and only
if plurality and antiplurality do.

In this case all scoring runoff rules agree with these also. How
often do they also agree with the Condorcet winner?

Asymptotic answer under IAC for 3 candidates:
10631/20736 ≈ 0.52168.

Polytope has 29 vertices, m = 12.
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Outline Applications

Positive participation paradox

Scoring runoff rules are vulnerable to this: some voters favour
a, who wins when they abstain but loses when they vote
sincerely.

The Nanson rule (based on Borda) gives the most interesting
computation.

Polytope has 6 vertices, 6 facets, m = 18.

Asymptotic answer under IAC for 3 candidates: 1/72.
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Outline Applications

Referendum paradox

Two alternatives are compared in N districts, each of n
voters, by simple majority, and the winner in the most districts
is the overall winner. Paradox occurs when this winner would
not win the vote if the districts had been combined into one.

Simplified version of what happened in Bush vs Gore 2000.
Related to Simpson’s paradox in statistics.

For each N can write a relevant polytope. For N = 7,
polytope has 36 vertices.

Answer : for example, if N = 7 and all voting situations
equally likely, we have 9409/46080 ≈ 0.20419.
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Outline Applications

Other probability models and contexts

IAC is well adapted to these computations, since probabilities
are just ratios of lattice point counts.

IC is not well adapted - the probability measure on the
simplex is much different. More probabilistic arguments using
normal approximation tend to work better there - see recent
papers of Geoff Pritchard (UoA Stats).

However other models very commonly used in social choice
also work well with this methodology: single peaked
preferences and maximal culture.

I conjecture that many more applications exist in social
sciences of which I am unaware.
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Outline Applications

Future work in this area

A whole cottage industry of papers in social choice theory has
been destroyed by these new algorithms.

Many algorithms for volume computation are very sensitive to
the number of defining hyperplanes and the number of
vertices. Thus finding the most efficient description of the
input system is important.

Serious progress in this area will require researchers in social
choice theory to understand in some detail how the algorithms
actually work.

This may even lead to proofs for larger (or general) numbers
of candidates when the polytopes concerned have a
particularly nice structure.
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Outline Applications

Where to find out more

My preprints:
http://www.cs.auckland.ac.nz/~mcw/Research/voting/.

De Loera survey: “The many aspects of counting lattice
points in polytopes”.

LattE: http://www.math.ucdavis.edu/~latte/

De Loera lecture (streaming video):
http://www.ima.umn.edu/2006-2007/T1.12-13.07/.
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