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Example (Birthday party drama)

I Imagine you are hosting a birthday party for a group of
children.

I You have purchased a selection of cheap plastic objects that
strangely appeal to this age group, and must give one to each
child as a gift.

I Naturally, you want to allocate the objects via a process that
is fair to each child, while also guaranteeing that, overall,
children are satisfied with their allocation.

I However, you have no idea as to the preferences of the
children.

I How should you allocate the toys?
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Formal model

I Let A be a finite set of n agents and O a finite set of n
objects.

I Each agent has a strict linear order over all objects; the
collection of all such is the profile.

I The house allocation problem: find a mechanism that for each
input profile provides a matching between A and O.

I Common applications: students to dorm rooms, military to
overseas postings, professors to offices.

I Key standard axiomatic properties:
I Pareto efficiency
I Anonymity
I Strategyproofness
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Common answer: serial dictatorship

I Fix an order on agents and let them choose in turn their
favorite remaining item.

I This mechanism is strategyproof, Pareto efficient and easy to
implement.

I However it seems very unfair to those who come later in the
choosing order.

I For example, the first agent always gets their top choice, while
the last must take whatever is left by all the others.

I This bias is independent of the preferences. For some
preference profiles, the last agent does fine, but earlier agents
always do at least as well as later ones.
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Randomized mechanism

I We can choose the initial order randomly (obtaining the
randomized mechanism RSD).

I This method seems fair ex ante, but still not fair ex post.

I Note that this is a (uniform) lottery over deterministic
mechanisms.
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Fractional mechanism

I Discrete mechanisms have some drawbacks.

I For example, they cannot treat agents symmetrically in all
cases (e.g. if preferences are unanimous: all people have the
same strict preference order over items).

I A fractional allocation mechanism allocates fractions of
objects in a consistent way.

I A fractional allocation can be interpreted as timesharing or
dividing objects.
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Fractional mechanisms and randomized mechanisms

I Given a randomized mechanism, we can always derive a
fractional mechanism (by taking expectations).

I Conversely (Birkhoff-von Neumann theorem): every fractional
allocation can be realized as a lottery over discrete allocations.

I A key question is: can we do this in a consistent way so that
our fractional mechanism is the expectation of a randomized
mechanism where all discrete mechanisms in the support have
desirable properties?
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Example

Consider the profile where agents a1, a2, a3 have respective
preferences over objects o1, o2, o3 as follows.

a1 :o1 � o2 � o3

a2 :o1 � o3 � o2

a3 :o2 � o1 � o3

Let rows represent agents a1, a2, a3 and columns represent objects
o1, o2, o3. The matrix of the fractional assignment from RSD is:3/6 1/6 2/6

3/6 0 3/6
0 5/6 1/6

 .



Top Trading Cycles (TTC) mechanism

I Each agent is given an initial allocation (the endowment).

I Each agent points to the owner of their favorite item.

I This creates a directed graph which must have at least one
cycle.

I Resolve all cycles by giving everyone in a cycle their desired
item.

I Continue with the remaining agents, after removing the
satisfied ones and their items.
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Properties of Top Trading Cycles mechanism

I Pareto efficient

I Strategyproof

I How fair is it?

I It seems less obviously unfair, since if the endowment is
chosen arbitrarily there is no obvious advantage to any agent.

I We can also choose the endowment uniformly at random
(TTC).
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The fractional mechanisms are the same

I Abdulkadiroğlu and Sönmez (1998) proved that RSD and
TTC give the same mapping from preference profiles to
lotteries over assignments.

I The two mechanisms are indistinguishable ex ante.

I However we have seen that ex post the randomized
mechanisms behave differently from the point of view of
fairness.

I There is a missing concept!



The fractional mechanisms are the same
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Assumptions

I We consider randomized mechanisms where the randomness is
realized before preferences are revealed.

I Thus the roles of the agents are known before their
preferences are. Advantages:
I lower communication complexity
I allows agents to more easily reason about their decisions
I de-emphasizes the randomization

I This decoupling happens in real-world examples, e.g. school
choice with randomly chosen tiebreak order, NBA draft.

I The unfairness we alluded to earlier has been perceived in
real-world examples.
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Order symmetry

I We define order symmetry, an average-case fairness concept
in this ordinal setting: each agent has equal chance of getting
their first choice, equal chance of their second item, etc.

I Formally, let P be a probability measure on preferences. We
say a deterministic or fractional assignment mechanism is
order symmetric with respect to P if the expected rank
distribution matrix with respect to P has all rows equal.

I This is a concept of fairness at a point in time after the roles
of the agents in the mechanism have been determined but
before preferences are known.

I We call a randomized mechanism ex post order symmetric if it
is described as a lottery over order symmetric deterministic
mechanisms.
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Probability measures on preference profiles

I We need some restriction: if P has all weight on unanimous
preferences, we can’t satisfy order symmetry.

I P is anonymous if the identity of agents is irrelevant and
neutral if the identity of objects is irrelevant.

I P is fully symmetric if both anonymous and neutral.
I Famous fully symmetric P :

I IC (independent agents, each choosing uniform permutation of
objects)

I Uniform distribution on any class defined without singling out
objects or agents, e.g. single peaked

I IAC and other urn models

I Mallows preferences are NOT fully symmetric (not neutral).
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Example (TTC fairer than SD under IC)

I Consider agents a1, a2, a3 and objects o1, o2, o3 under IC
probability measure on preferences. The expected rank
distribution matrix for SD with picking order a1, a2, a3 is 1 0 0

2/3 1/3 0
1/3 1/3 1/3

 .

I For TTC with initial endowment a1 ← o1, a2 ← o2, a3 ← o3
we have 2/3 2/9 1/9

2/3 2/9 1/9
2/3 2/9 1/9

 .



Order symmetry is a weakening of anonymity

No discrete mechanism can be anonymous. However:

Theorem

If A is an anonymous fractional assignment mechanism and P is
an anonymous probability measure then A satisfies order symmetry
with respect to P .



Huge difference between RSD and TTC

Theorem

Let P be a fully symmetric measure. Then TTC with any fixed
endowment is order symmetric. Thus TTC is ex post order
symmetric.

Theorem

Let P be a probability measure. The only way RSD can be ex
post order symmetric with respect to P is if P is supported on
profiles in which all agents have different top choices.



Example (TTC under cyclic permutation 1→ 2→ 3→ 1)

agent profile permute A permute A and O

a1 o1 � o2 � o3 o2 � o1 � o3 o3 � o2 � o1
a2 o1 � o3 � o2 o1 � o2 � o3 o2 � o3 � o1
a3 o2 � o1 � o3 o1 � o3 � o2 o2 � o1 � o3

endowment
a1 o1 o3 o1
a2 o2 o1 o2
a3 o3 o2 o3

allocation
a1 o1 o2 o3
a2 o3 o1 o2
a3 o2 o3 o1

rank
a1 1 1 1
a2 2 1 1
a3 1 2 2



Order symmetry is compatible with ordinal efficiency

I Ordinal efficiency is a strengthening of ex post Pareto
efficiency that makes sense for fractional mechanisms.

I We defined a (computationally intractable) mechanism called
RMM-RA.

Theorem

RMM-RA is ex ante ordinally efficient and ex post order
symmetric with respect to every fully symmetric P .

Open question: Is the same true of Probabilistic Serial
(Bogomolnaia and Moulin 2001)? In other words, can it be
realized as a lottery over order symmetric discrete mechanisms,
without losing its nice properties?



What if we don’t have order symmetry?

I It may be desirable in some applications (e.g. sports draft) to
avoid order symmetry.

I In any case it is useful to be able to quantify the deviation
from order symmetry.

I For our basic computations we use the normalized gap in
Borda welfare (linear utilities) between best-off and worst-off
agent, in expectation over P .

I This is of course zero for order symmetric mechanisms.

I Other choices of how to measure unfairness are possible.
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Order bias under sincere Mallows preferences for 4
mechanisms

Figure: Mallows preferences, Borda order bias, n = 64, sample size 10000



Some questions

I Can Probabilistic Serial be decomposed as a lottery over order
symmetric discrete mechanisms?

I Does TTC dominate SD with respect to order bias for every
measure P?

I Is order symmetry compatible with other properties, such as
obvious strategyproofness?

I What can be said about order symmetry in other allocation
models? In particular how does the idea of order symmetry
relate to other fairness criteria such as envy-freeness and EF1?

I Is this average-case fairness idea useful more generally (e.g.
fairness in AI/ML)?
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Extensions

I After submission we were informed that in the special case of
IC, the concept of order symmetry was already introduced in
the unpublished PhD thesis of Xinghua Long (TAMU 2016);
see Long & Velez (arXiv 2021).

I Previous audiences have alerted us to papers that are
somewhat relevant: Harless & Manjunath, International
Economic Review 2018; Pycia & Ünver, Theoretical
Economics 2017.

I This is an idea whose time has come, and should be
investigated in other social choice models.

I Geoff Pritchard and I are close to finishing a detailed analysis
of the asymptotic distribution of the rank of the item obtained
by each agent for Boston algorithms under IC.


