Order Symmetry：a new fairness criterion for assignment mechanisms

Mark C．Wilson（https：／／markcwilson．site）
（joint work with Rupert Freeman and Geoffrey Pritchard）

Harvard EconCS Seminar 2021－10－08

Example (Birthday party drama)

- Imagine you are hosting a birthday party for a group of children.
- You have purchased a selection of cheap plastic objects that strangely appeal to this age group, and must give one to each child as a gift.
- Naturally, you want to allocate the objects via a process that is fair to each child, while also guaranteeing that, overall, children are satisfied with their allocation.
- However, you have no idea as to the preferences of the children.
- How should you allocate the toys?

Example (Birthday party drama)

- Imagine you are hosting a birthday party for a group of children.
- You have purchased a selection of cheap plastic objects that strangely appeal to this age group, and must give one to each child as a gift.
- Naturally, you want to allocate the objects via a process that is fair to each child, while also guaranteeing that, overall, children are satisfied with their allocation.
- However, you have no idea as to the preferences of the children.
- How should you allocate the toys?

Example (Birthday party drama)

- Imagine you are hosting a birthday party for a group of children.
- You have purchased a selection of cheap plastic objects that strangely appeal to this age group, and must give one to each child as a gift.
- Naturally, you want to allocate the objects via a process that is fair to each child, while also guaranteeing that, overall, children are satisfied with their allocation.
- However, you have no idea as to the preferences of the children.
- How should you allocate the toys?

Example (Birthday party drama)

- Imagine you are hosting a birthday party for a group of children.
- You have purchased a selection of cheap plastic objects that strangely appeal to this age group, and must give one to each child as a gift.
- Naturally, you want to allocate the objects via a process that is fair to each child, while also guaranteeing that, overall, children are satisfied with their allocation.
- However, you have no idea as to the preferences of the children.
- How should you allocate the toys?

Example (Birthday party drama)

- Imagine you are hosting a birthday party for a group of children.
- You have purchased a selection of cheap plastic objects that strangely appeal to this age group, and must give one to each child as a gift.
- Naturally, you want to allocate the objects via a process that is fair to each child, while also guaranteeing that, overall, children are satisfied with their allocation.
- However, you have no idea as to the preferences of the children.
- How should you allocate the toys?

Example (Birthday party drama)

- Imagine you are hosting a birthday party for a group of children.
- You have purchased a selection of cheap plastic objects that strangely appeal to this age group, and must give one to each child as a gift.
- Naturally, you want to allocate the objects via a process that is fair to each child, while also guaranteeing that, overall, children are satisfied with their allocation.
- However, you have no idea as to the preferences of the children.
- How should you allocate the toys?

Formal model

- Let A be a finite set of n agents and O a finite set of n objects.
- Each agent has a strict linear order over all objects; the collection of all such is the profile.
- The house allocation problem: find a mechanism that for each input profile provides a matching between A and O.
- Common applications: students to dorm rooms, military to overseas postings, professors to offices.
- Key standard axiomatic properties:
- Pareto efficiency
- Anonymity
- Strategyproofness

Formal model

- Let A be a finite set of n agents and O a finite set of n objects.
- Each agent has a strict linear order over all objects; the collection of all such is the profile.
- The house allocation problem: find a mechanism that for each input profile provides a matching between A and O.
- Common applications: students to dorm rooms, military to overseas postings, professors to offices.
- Key standard axiomatic properties:
- Pareto efficiency
- Anonymity
- Strategyproofness

Formal model

- Let A be a finite set of n agents and O a finite set of n objects.
- Each agent has a strict linear order over all objects; the collection of all such is the profile.
- The house allocation problem: find a mechanism that for each input profile provides a matching between A and O.
- Common applications: students to dorm rooms, military to overseas postings, professors to offices.
- Key standard axiomatic properties:
- Pareto efficiency
- Anonymity
- Strategyproofness

Formal model

- Let A be a finite set of n agents and O a finite set of n objects.
- Each agent has a strict linear order over all objects; the collection of all such is the profile.
- The house allocation problem: find a mechanism that for each input profile provides a matching between A and O.
- Common applications: students to dorm rooms, military to overseas postings, professors to offices.
- Key standard axiomatic properties:
- Pareto efficiency
- Anonymity
- Strategyproofness

Formal model

- Let A be a finite set of n agents and O a finite set of n objects.
- Each agent has a strict linear order over all objects; the collection of all such is the profile.
- The house allocation problem: find a mechanism that for each input profile provides a matching between A and O.
- Common applications: students to dorm rooms, military to overseas postings, professors to offices.
- Key standard axiomatic properties:
- Pareto efficiency
- Anonymity
- Strategyproofness

Formal model

- Let A be a finite set of n agents and O a finite set of n objects.
- Each agent has a strict linear order over all objects; the collection of all such is the profile.
- The house allocation problem: find a mechanism that for each input profile provides a matching between A and O.
- Common applications: students to dorm rooms, military to overseas postings, professors to offices.
- Key standard axiomatic properties:
- Pareto efficiency
- Anonymity
- Strategyproofness

Formal model

- Let A be a finite set of n agents and O a finite set of n objects.
- Each agent has a strict linear order over all objects; the collection of all such is the profile.
- The house allocation problem: find a mechanism that for each input profile provides a matching between A and O.
- Common applications: students to dorm rooms, military to overseas postings, professors to offices.
- Key standard axiomatic properties:
- Pareto efficiency
- Anonymity
- Strategyproofness

Formal model

- Let A be a finite set of n agents and O a finite set of n objects.
- Each agent has a strict linear order over all objects; the collection of all such is the profile.
- The house allocation problem: find a mechanism that for each input profile provides a matching between A and O.
- Common applications: students to dorm rooms, military to overseas postings, professors to offices.
- Key standard axiomatic properties:
- Pareto efficiency
- Anonymity
- Strategyproofness

Common answer: serial dictatorship

- Fix an order on agents and let them choose in turn their favorite remaining item.
- This mechanism is strategyproof, Pareto efficient and easy to implement.
- However it seems very unfair to those who come later in the choosing order.
- For example, the first agent always gets their top choice, while the last must take whatever is left by all the others.
- This bias is independent of the preferences. For some preference profiles, the last agent does fine, but earlier agents always do at least as well as later ones.

Common answer: serial dictatorship

- Fix an order on agents and let them choose in turn their favorite remaining item.
- This mechanism is strategyproof, Pareto efficient and easy to implement.
- However it seems very unfair to those who come later in the choosing order.
- For example, the first agent always gets their top choice, while the last must take whatever is left by all the others.
- This bias is independent of the preferences. For some preference profiles, the last agent does fine, but earlier agents always do at least as well as later ones.

Common answer: serial dictatorship

- Fix an order on agents and let them choose in turn their favorite remaining item.
- This mechanism is strategyproof, Pareto efficient and easy to implement.
- However it seems very unfair to those who come later in the choosing order.
- For example, the first agent always gets their top choice, while the last must take whatever is left by all the others.
- This bias is independent of the preferences. For some preference profiles, the last agent does fine, but earlier agents always do at least as well as later ones.

Common answer: serial dictatorship

- Fix an order on agents and let them choose in turn their favorite remaining item.
- This mechanism is strategyproof, Pareto efficient and easy to implement.
- However it seems very unfair to those who come later in the choosing order.
- For example, the first agent always gets their top choice, while the last must take whatever is left by all the others.
- This bias is independent of the preferences. For some preference profiles, the last agent does fine, but earlier agents always do at least as well as later ones.

Common answer: serial dictatorship

- Fix an order on agents and let them choose in turn their favorite remaining item.
- This mechanism is strategyproof, Pareto efficient and easy to implement.
- However it seems very unfair to those who come later in the choosing order.
- For example, the first agent always gets their top choice, while the last must take whatever is left by all the others.
- This bias is independent of the preferences. For some preference profiles, the last agent does fine, but earlier agents always do at least as well as later ones.

Randomized mechanism

- We can choose the initial order randomly (obtaining the randomized mechanism RSD).
- This method seems fair ex ante, but still not fair ex post.
- Note that this is a (uniform) lottery over deterministic mechanisms.

Randomized mechanism

- We can choose the initial order randomly (obtaining the randomized mechanism RSD).
- This method seems fair ex ante, but still not fair ex post.
- Note that this is a (uniform) lottery over deterministic mechanisms.

Randomized mechanism

- We can choose the initial order randomly (obtaining the randomized mechanism RSD).
- This method seems fair ex ante, but still not fair ex post.
- Note that this is a (uniform) lottery over deterministic mechanisms.

Fractional mechanism

- Discrete mechanisms have some drawbacks.
- For example, they cannot treat agents symmetrically in all cases (e.g. if preferences are unanimous: all people have the same strict preference order over items).
- A fractional allocation mechanism allocates fractions of objects in a consistent way.
- A fractional allocation can be interpreted as timesharing or dividing objects.

Fractional mechanism

- Discrete mechanisms have some drawbacks.
- For example, they cannot treat agents symmetrically in all cases (e.g. if preferences are unanimous: all people have the same strict preference order over items).
- A fractional allocation mechanism allocates fractions of objects in a consistent way.
- A fractional allocation can be interpreted as timesharing or dividing objects.

Fractional mechanism

- Discrete mechanisms have some drawbacks.
- For example, they cannot treat agents symmetrically in all cases (e.g. if preferences are unanimous: all people have the same strict preference order over items).
- A fractional allocation mechanism allocates fractions of objects in a consistent way.
- A fractional allocation can be interpreted as timesharing or dividing objects.

Fractional mechanism

- Discrete mechanisms have some drawbacks.
- For example, they cannot treat agents symmetrically in all cases (e.g. if preferences are unanimous: all people have the same strict preference order over items).
- A fractional allocation mechanism allocates fractions of objects in a consistent way.
- A fractional allocation can be interpreted as timesharing or dividing objects.

Fractional mechanisms and randomized mechanisms

- Given a randomized mechanism, we can always derive a fractional mechanism (by taking expectations).
- Conversely (Birkhoff-von Neumann theorem): every fractional allocation can be realized as a lottery over discrete allocations.
- A key question is: can we do this in a consistent way so that our fractional mechanism is the expectation of a randomized mechanism where all discrete mechanisms in the support have desirable properties?

Fractional mechanisms and randomized mechanisms

- Given a randomized mechanism, we can always derive a fractional mechanism (by taking expectations).
- Conversely (Birkhoff-von Neumann theorem): every fractional allocation can be realized as a lottery over discrete allocations.
- A key question is: can we do this in a consistent way so that our fractional mechanism is the expectation of a randomized mechanism where all discrete mechanisms in the support have desirable properties?

Fractional mechanisms and randomized mechanisms

- Given a randomized mechanism, we can always derive a fractional mechanism (by taking expectations).
- Conversely (Birkhoff-von Neumann theorem): every fractional allocation can be realized as a lottery over discrete allocations.
- A key question is: can we do this in a consistent way so that our fractional mechanism is the expectation of a randomized mechanism where all discrete mechanisms in the support have desirable properties?

Example

Consider the profile where agents a_{1}, a_{2}, a_{3} have respective preferences over objects o_{1}, o_{2}, o_{3} as follows.

$$
\begin{aligned}
& a_{1}: o_{1} \succ o_{2} \succ o_{3} \\
& a_{2}: o_{1} \succ o_{3} \succ o_{2} \\
& a_{3}: o_{2} \succ o_{1} \succ o_{3}
\end{aligned}
$$

Let rows represent agents a_{1}, a_{2}, a_{3} and columns represent objects o_{1}, o_{2}, o_{3}. The matrix of the fractional assignment from RSD is:

$$
\left[\begin{array}{ccc}
3 / 6 & 1 / 6 & 2 / 6 \\
3 / 6 & 0 & 3 / 6 \\
0 & 5 / 6 & 1 / 6
\end{array}\right] .
$$

Top Trading Cycles (TTC) mechanism

- Each agent is given an initial allocation (the endowment).
- Each agent points to the owner of their favorite item.
- This creates a directed graph which must have at least one cycle.
- Resolve all cycles by giving everyone in a cycle their desired item.
- Continue with the remaining agents, after removing the satisfied ones and their items.

Top Trading Cycles (TTC) mechanism

- Each agent is given an initial allocation (the endowment).
- Each agent points to the owner of their favorite item.
- This creates a directed graph which must have at least one cycle.
- Resolve all cycles by giving everyone in a cycle their desired item.
- Continue with the remaining agents, after removing the satisfied ones and their items.

Top Trading Cycles (TTC) mechanism

- Each agent is given an initial allocation (the endowment).
- Each agent points to the owner of their favorite item.
- This creates a directed graph which must have at least one cycle.
- Resolve all cycles by giving everyone in a cycle their desired item.
- Continue with the remaining agents, after removing the satisfied ones and their items.

Top Trading Cycles (TTC) mechanism

- Each agent is given an initial allocation (the endowment).
- Each agent points to the owner of their favorite item.
- This creates a directed graph which must have at least one cycle.
- Resolve all cycles by giving everyone in a cycle their desired item.
- Continue with the remaining agents, after removing the satisfied ones and their items.

Top Trading Cycles (TTC) mechanism

- Each agent is given an initial allocation (the endowment).
- Each agent points to the owner of their favorite item.
- This creates a directed graph which must have at least one cycle.
- Resolve all cycles by giving everyone in a cycle their desired item.
- Continue with the remaining agents, after removing the satisfied ones and their items.

Properties of Top Trading Cycles mechanism

- Pareto efficient
- Strategyproof
- How fair is it?
- It seems less obviously unfair, since if the endowment is chosen arbitrarily there is no obvious advantage to any agent.
- We can also choose the endowment uniformly at random (TTC).

Properties of Top Trading Cycles mechanism

- Pareto efficient
- Strategyproof
- How fair is it?
- It seems less obviously unfair, since if the endowment is chosen arbitrarily there is no obvious advantage to any agent.
- We can also choose the endowment uniformly at random (TTC).

Properties of Top Trading Cycles mechanism

- Pareto efficient
- Strategyproof
- How fair is it?
- It seems less obviously unfair, since if the endowment is chosen arbitrarily there is no obvious advantage to any agent.
- We can also choose the endowment uniformly at random (TTC).

Properties of Top Trading Cycles mechanism

- Pareto efficient
- Strategyproof
- How fair is it?
- It seems less obviously unfair, since if the endowment is chosen arbitrarily there is no obvious advantage to any agent.
- We can also choose the endowment uniformly at random (TTC).

Properties of Top Trading Cycles mechanism

- Pareto efficient
- Strategyproof
- How fair is it?
- It seems less obviously unfair, since if the endowment is chosen arbitrarily there is no obvious advantage to any agent.
- We can also choose the endowment uniformly at random (TTC).

The fractional mechanisms are the same

- Abdulkadiroğlu and Sönmez (1998) proved that RSD and TTC give the same mapping from preference profiles to lotteries over assignments.
- The two mechanisms are indistinguishable ex ante.
- However we have seen that ex post the randomized mechanisms behave differently from the point of view of fairness.
- There is a missing concept!

The fractional mechanisms are the same

- Abdulkadiroğlu and Sönmez (1998) proved that RSD and TTC give the same mapping from preference profiles to lotteries over assignments.
- The two mechanisms are indistinguishable ex ante.
- However we have seen that ex post the randomized mechanisms behave differently from the point of view of fairness.
- There is a missing concept!

The fractional mechanisms are the same

- Abdulkadiroğlu and Sönmez (1998) proved that RSD and TTC give the same mapping from preference profiles to lotteries over assignments.
- The two mechanisms are indistinguishable ex ante.
- However we have seen that ex post the randomized mechanisms behave differently from the point of view of fairness.
- There is a missing concept!

The fractional mechanisms are the same

- Abdulkadiroğlu and Sönmez (1998) proved that RSD and TTC give the same mapping from preference profiles to lotteries over assignments.
- The two mechanisms are indistinguishable ex ante.
- However we have seen that ex post the randomized mechanisms behave differently from the point of view of fairness.
- There is a missing concept!

Assumptions

- We consider randomized mechanisms where the randomness is realized before preferences are revealed.
- Thus the roles of the agents are known before their preferences are. Advantages:
- lower communication complexity
- allows agents to more easily reason about their decisions
- de-emphasizes the randomization
- This decoupling happens in real-world examples, e.g. school choice with randomly chosen tiebreak order, NBA draft.
- The unfairness we alluded to earlier has been perceived in real-world examples.

Assumptions

- We consider randomized mechanisms where the randomness is realized before preferences are revealed.
- Thus the roles of the agents are known before their preferences are. Advantages:
- lower communication complexity
- allows agents to more easily reason about their decisions
- de-emphasizes the randomization
- This decoupling happens in real-world examples, e.g. school choice with randomly chosen tiebreak order, NBA draft.
- The unfairness we alluded to earlier has been perceived in real-world examples.

Assumptions

- We consider randomized mechanisms where the randomness is realized before preferences are revealed.
- Thus the roles of the agents are known before their preferences are. Advantages:
- lower communication complexity
- allows agents to more easily reason about their decisions
- de-emphasizes the randomization
- This decoupling happens in real-world examples, e.g. school choice with randomly chosen tiebreak order, NBA draft.
- The unfairness we alluded to earlier has been perceived in real-world examples.

Assumptions

- We consider randomized mechanisms where the randomness is realized before preferences are revealed.
- Thus the roles of the agents are known before their preferences are. Advantages:
- lower communication complexity
- allows agents to more easily reason about their decisions
- de-emphasizes the randomization
- This decoupling happens in real-world examples, e.g. school choice with randomly chosen tiebreak order, NBA draft.
- The unfairness we alluded to earlier has been perceived in real-world examples.

Assumptions

- We consider randomized mechanisms where the randomness is realized before preferences are revealed.
- Thus the roles of the agents are known before their preferences are. Advantages:
- lower communication complexity
- allows agents to more easily reason about their decisions
- de-emphasizes the randomization
- This decoupling happens in real-world examples, e.g. school choice with randomly chosen tiebreak order, NBA draft.
- The unfairness we alluded to earlier has been perceived in real-world examples.

Assumptions

- We consider randomized mechanisms where the randomness is realized before preferences are revealed.
- Thus the roles of the agents are known before their preferences are. Advantages:
- lower communication complexity
- allows agents to more easily reason about their decisions
- de-emphasizes the randomization
- This decoupling happens in real-world examples, e.g. school choice with randomly chosen tiebreak order, NBA draft.
- The unfairness we alluded to earlier has been perceived in real-world examples.

Assumptions

- We consider randomized mechanisms where the randomness is realized before preferences are revealed.
- Thus the roles of the agents are known before their preferences are. Advantages:
- lower communication complexity
- allows agents to more easily reason about their decisions
- de-emphasizes the randomization
- This decoupling happens in real-world examples, e.g. school choice with randomly chosen tiebreak order, NBA draft.
- The unfairness we alluded to earlier has been perceived in real-world examples.

Order symmetry

- We define order symmetry, an average-case fairness concept in this ordinal setting: each agent has equal chance of getting their first choice, equal chance of their second item, etc.
- Formally, let P be a probability measure on preferences. We say a deterministic or fractional assignment mechanism is order symmetric with respect to P if the expected rank distribution matrix with respect to P has all rows equal.
- This is a concept of fairness at a point in time after the roles of the agents in the mechanism have been determined but before preferences are known.
- We call a randomized mechanism ex post order symmetric if it is described as a lottery over order symmetric deterministic mechanisms.

Order symmetry

- We define order symmetry, an average-case fairness concept in this ordinal setting: each agent has equal chance of getting their first choice, equal chance of their second item, etc.
- Formally, let P be a probability measure on preferences. We say a deterministic or fractional assignment mechanism is order symmetric with respect to P if the expected rank distribution matrix with respect to P has all rows equal.
- This is a concept of fairness at a point in time after the roles of the agents in the mechanism have been determined but before preferences are known.
- We call a randomized mechanism ex post order symmetric if it is described as a lottery over order symmetric deterministic mechanisms.

Order symmetry

- We define order symmetry, an average-case fairness concept in this ordinal setting: each agent has equal chance of getting their first choice, equal chance of their second item, etc.
- Formally, let P be a probability measure on preferences. We say a deterministic or fractional assignment mechanism is order symmetric with respect to P if the expected rank distribution matrix with respect to P has all rows equal.
- This is a concept of fairness at a point in time after the roles of the agents in the mechanism have been determined but before preferences are known.
- We call a randomized mechanism ex post order symmetric if it is described as a lottery over order symmetric deterministic mechanisms.

Order symmetry

- We define order symmetry, an average-case fairness concept in this ordinal setting: each agent has equal chance of getting their first choice, equal chance of their second item, etc.
- Formally, let P be a probability measure on preferences. We say a deterministic or fractional assignment mechanism is order symmetric with respect to P if the expected rank distribution matrix with respect to P has all rows equal.
- This is a concept of fairness at a point in time after the roles of the agents in the mechanism have been determined but before preferences are known.
- We call a randomized mechanism ex post order symmetric if it is described as a lottery over order symmetric deterministic mechanisms.

Probability measures on preference profiles

- We need some restriction: if P has all weight on unanimous preferences, we can't satisfy order symmetry.
- P is anonymous if the identity of agents is irrelevant and neutral if the identity of objects is irrelevant.
- P is fully symmetric if both anonymous and neutral.
- Famous fully symmetric P :
- IC (independent agents, each choosing uniform permutation of objects)
- Uniform distribution on any class defined without singling out objects or agents, e.g. single peaked
- IAC and other urn models
- Mallows preferences are NOT fully symmetric (not neutral).

Probability measures on preference profiles

- We need some restriction: if P has all weight on unanimous preferences, we can't satisfy order symmetry.
- P is anonymous if the identity of agents is irrelevant and neutral if the identity of objects is irrelevant.
- P is fully symmetric if both anonymous and neutral.
- Famous fully symmetric P :
- IC (independent agents, each choosing uniform permutation of objects)
- Uniform distribution on any class defined without singling out objects or agents, e.g. single peaked
- IAC and other urn models
- Mallows preferences are NOT fully symmetric (not neutral).

Probability measures on preference profiles

- We need some restriction: if P has all weight on unanimous preferences, we can't satisfy order symmetry.
- P is anonymous if the identity of agents is irrelevant and neutral if the identity of objects is irrelevant.
- P is fully symmetric if both anonymous and neutral.
- Famous fully symmetric P :
- IC (independent agents, each choosing uniform permutation of objects)
- Uniform distribution on any class defined without singling out objects or agents, e.g. single peaked
- IAC and other urn models
- Mallows preferences are NOT fully symmetric (not neutral).

Probability measures on preference profiles

- We need some restriction: if P has all weight on unanimous preferences, we can't satisfy order symmetry.
- P is anonymous if the identity of agents is irrelevant and neutral if the identity of objects is irrelevant.
- P is fully symmetric if both anonymous and neutral.
- Famous fully symmetric P :
- IC (independent agents, each choosing uniform permutation of objects)
- Uniform distribution on any class defined without singling out objects or agents, e.g. single peaked
- IAC and other urn models
- Mallows preferences are NOT fully symmetric (not neutral).

Probability measures on preference profiles

- We need some restriction: if P has all weight on unanimous preferences, we can't satisfy order symmetry.
- P is anonymous if the identity of agents is irrelevant and neutral if the identity of objects is irrelevant.
- P is fully symmetric if both anonymous and neutral.
- Famous fully symmetric P :
- IC (independent agents, each choosing uniform permutation of objects)
- Uniform distribution on any class defined without singling out objects or agents, e.g. single peaked
- IAC and other urn models
- Mallows preferences are NOT fully symmetric (not neutral).

Probability measures on preference profiles

- We need some restriction: if P has all weight on unanimous preferences, we can't satisfy order symmetry.
- P is anonymous if the identity of agents is irrelevant and neutral if the identity of objects is irrelevant.
- P is fully symmetric if both anonymous and neutral.
- Famous fully symmetric P :
- IC (independent agents, each choosing uniform permutation of objects)
- Uniform distribution on any class defined without singling out objects or agents, e.g. single peaked
- IAC and other urn models
- Mallows preferences are NOT fully symmetric (not neutral).

Probability measures on preference profiles

- We need some restriction: if P has all weight on unanimous preferences, we can't satisfy order symmetry.
- P is anonymous if the identity of agents is irrelevant and neutral if the identity of objects is irrelevant.
- P is fully symmetric if both anonymous and neutral.
- Famous fully symmetric P :
- IC (independent agents, each choosing uniform permutation of objects)
- Uniform distribution on any class defined without singling out objects or agents, e.g. single peaked
- IAC and other urn models
- Mallows preferences are NOT fully symmetric (not neutral).

Probability measures on preference profiles

- We need some restriction: if P has all weight on unanimous preferences, we can't satisfy order symmetry.
- P is anonymous if the identity of agents is irrelevant and neutral if the identity of objects is irrelevant.
- P is fully symmetric if both anonymous and neutral.
- Famous fully symmetric P :
- IC (independent agents, each choosing uniform permutation of objects)
- Uniform distribution on any class defined without singling out objects or agents, e.g. single peaked
- IAC and other urn models
- Mallows preferences are NOT fully symmetric (not neutral).

Example (TTC fairer than SD under IC)

- Consider agents a_{1}, a_{2}, a_{3} and objects o_{1}, o_{2}, o_{3} under IC probability measure on preferences. The expected rank distribution matrix for SD with picking order a_{1}, a_{2}, a_{3} is

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 / 3 & 1 / 3 & 0 \\
1 / 3 & 1 / 3 & 1 / 3
\end{array}\right] .
$$

- For TTC with initial endowment $a_{1} \leftarrow o_{1}, a_{2} \leftarrow o_{2}, a_{3} \leftarrow o_{3}$ we have

$$
\left[\begin{array}{lll}
2 / 3 & 2 / 9 & 1 / 9 \\
2 / 3 & 2 / 9 & 1 / 9 \\
2 / 3 & 2 / 9 & 1 / 9
\end{array}\right] .
$$

Order symmetry is a weakening of anonymity

No discrete mechanism can be anonymous. However:

Theorem

If A is an anonymous fractional assignment mechanism and P is an anonymous probability measure then A satisfies order symmetry with respect to P.

Huge difference between RSD and TTC

Theorem

Let P be a fully symmetric measure. Then TTC with any fixed endowment is order symmetric. Thus TTC is ex post order symmetric.

Theorem

Let P be a probability measure. The only way RSD can be ex post order symmetric with respect to P is if P is supported on profiles in which all agents have different top choices.

Example (TTC under cyclic permutation $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$)

agent	profile	permute A	permute A and O
a_{1}	$o_{1} \succ o_{2} \succ o_{3}$	$o_{2} \succ o_{1} \succ o_{3}$	$o_{3} \succ o_{2} \succ o_{1}$
a_{2}	$o_{1} \succ o_{3} \succ o_{2}$	$o_{1} \succ o_{2} \succ o_{3}$	$o_{2} \succ o_{3} \succ o_{1}$
a_{3}	$o_{2} \succ o_{1} \succ o_{3}$	$o_{1} \succ o_{3} \succ o_{2}$	$o_{2} \succ o_{1} \succ o_{3}$
	endowment		
a_{1}	o_{1}	o_{3}	o_{1}
a_{2}	o_{2}	o_{1}	o_{2}
a_{3}	o_{3}	o_{2}	o_{3}
	allocation		
a_{1}	o_{1}	o_{2}	o_{3}
a_{2}	o_{3}	o_{1}	o_{2}
a_{3}	o_{2}	o_{3}	o_{1}
	rank		
a_{1}	1	1	1
a_{2}	2	1	1
a_{3}	1	2	2

Order symmetry is compatible with ordinal efficiency

- Ordinal efficiency is a strengthening of ex post Pareto efficiency that makes sense for fractional mechanisms.
- We defined a (computationally intractable) mechanism called RMM-RA.

Theorem

RMM-RA is ex ante ordinally efficient and ex post order symmetric with respect to every fully symmetric P.

Open question: Is the same true of Probabilistic Serial (Bogomolnaia and Moulin 2001)? In other words, can it be realized as a lottery over order symmetric discrete mechanisms, without losing its nice properties?

What if we don't have order symmetry?

- It may be desirable in some applications (e.g. sports draft) to avoid order symmetry.
- In any case it is useful to be able to quantify the deviation from order symmetry.
- For our basic computations we use the normalized gap in Borda welfare (linear utilities) between best-off and worst-off agent, in expectation over P.
- This is of course zero for order symmetric mechanisms.
- Other choices of how to measure unfairness are possible.

What if we don't have order symmetry?

- It may be desirable in some applications (e.g. sports draft) to avoid order symmetry.
- In any case it is useful to be able to quantify the deviation from order symmetry.
- For our basic computations we use the normalized gap in Borda welfare (linear utilities) between best-off and worst-off agent, in expectation over P.
- This is of course zero for order symmetric mechanisms.
- Other choices of how to measure unfairness are possible.

What if we don't have order symmetry?

- It may be desirable in some applications (e.g. sports draft) to avoid order symmetry.
- In any case it is useful to be able to quantify the deviation from order symmetry.
- For our basic computations we use the normalized gap in Borda welfare (linear utilities) between best-off and worst-off agent, in expectation over P.
- This is of course zero for order symmetric mechanisms.
- Other choices of how to measure unfairness are possible.

What if we don't have order symmetry?

- It may be desirable in some applications (e.g. sports draft) to avoid order symmetry.
- In any case it is useful to be able to quantify the deviation from order symmetry.
- For our basic computations we use the normalized gap in Borda welfare (linear utilities) between best-off and worst-off agent, in expectation over P.
- This is of course zero for order symmetric mechanisms.
- Other choices of how to measure unfairness are possible.

What if we don't have order symmetry?

- It may be desirable in some applications (e.g. sports draft) to avoid order symmetry.
- In any case it is useful to be able to quantify the deviation from order symmetry.
- For our basic computations we use the normalized gap in Borda welfare (linear utilities) between best-off and worst-off agent, in expectation over P.
- This is of course zero for order symmetric mechanisms.
- Other choices of how to measure unfairness are possible.

Order bias under sincere Mallows preferences for 4 mechanisms

Figure: Mallows preferences, Borda order bias, $n=64$, sample size 10000

Some questions

- Can Probabilistic Serial be decomposed as a lottery over order symmetric discrete mechanisms?
- Does TTC dominate SD with respect to order bias for every measure P ?
- Is order symmetry compatible with other properties, such as obvious strategyproofness?
- What can be said about order symmetry in other allocation models? In particular how does the idea of order symmetry relate to other fairness criteria such as envy-freeness and EF1?
- Is this average-case fairness idea useful more generally (e.g. fairness in $\mathrm{Al} / \mathrm{ML}$)?

Some questions

- Can Probabilistic Serial be decomposed as a lottery over order symmetric discrete mechanisms?
- Does TTC dominate SD with respect to order bias for every measure P ?
- Is order symmetry compatible with other properties, such as obvious strategyproofness?
- What can be said about order symmetry in other allocation models? In particular how does the idea of order symmetry relate to other fairness criteria such as envy-freeness and EF1?
- Is this average-case fairness idea useful more generally (e.g. fairness in $\mathrm{Al} / \mathrm{ML}$)?

Some questions

- Can Probabilistic Serial be decomposed as a lottery over order symmetric discrete mechanisms?
- Does TTC dominate SD with respect to order bias for every measure P ?
- Is order symmetry compatible with other properties, such as obvious strategyproofness?
- What can be said about order symmetry in other allocation models? In particular how does the idea of order symmetry relate to other fairness criteria such as envy-freeness and EF1?
- Is this average-case fairness idea useful more generally (e.g. fairness in $\mathrm{Al} / \mathrm{ML}$)?

Some questions

- Can Probabilistic Serial be decomposed as a lottery over order symmetric discrete mechanisms?
- Does TTC dominate SD with respect to order bias for every measure P ?
- Is order symmetry compatible with other properties, such as obvious strategyproofness?
- What can be said about order symmetry in other allocation models? In particular how does the idea of order symmetry relate to other fairness criteria such as envy-freeness and EF1?
- Is this average-case fairness idea useful more generally (e.g. fairness in $\mathrm{Al} / \mathrm{ML}$)?

Some questions

- Can Probabilistic Serial be decomposed as a lottery over order symmetric discrete mechanisms?
- Does TTC dominate SD with respect to order bias for every measure P ?
- Is order symmetry compatible with other properties, such as obvious strategyproofness?
- What can be said about order symmetry in other allocation models? In particular how does the idea of order symmetry relate to other fairness criteria such as envy-freeness and EF1?
- Is this average-case fairness idea useful more generally (e.g. fairness in $\mathrm{Al} / \mathrm{ML}$)?

Extensions

- After submission we were informed that in the special case of IC, the concept of order symmetry was already introduced in the unpublished PhD thesis of Xinghua Long (TAMU 2016); see Long \& Velez (arXiv 2021).
- Previous audiences have alerted us to papers that are somewhat relevant: Harless \& Manjunath, International Economic Review 2018; Pycia \& Ünver, Theoretical Economics 2017.
- This is an idea whose time has come, and should be investigated in other social choice models.
- Geoff Pritchard and I are close to finishing a detailed analysis of the asymptotic distribution of the rank of the item obtained by each agent for Boston algorithms under IC.

