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Please note!

I This is a general overview of a big area, so necessarily omits
most details and citations.

I Also, I work on several other research topics, mostly centered
around collective decision-making:
I social choice, voting, resource allocation (relevant to AI and

ML)
I network science, diffusion of beliefs, preferences, etc
I scientometrics, improving science

I Please see https://markcwilson.site for much more.
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What is Analytic Combinatorics?

I It presumably means the use of mathematical analysis to
study problems in combinatorics.

I Analysis has many branches: real, complex, functional,
differential equations, measure theory, . . . . There are many
possible ways to apply it to combinatorics!

I The most common usage of the term refers to the application
of complex analysis to combinatorial enumeration (counting,
discrete probability).



What is Analytic Combinatorics?

I It presumably means the use of mathematical analysis to
study problems in combinatorics.

I Analysis has many branches: real, complex, functional,
differential equations, measure theory, . . . . There are many
possible ways to apply it to combinatorics!

I The most common usage of the term refers to the application
of complex analysis to combinatorial enumeration (counting,
discrete probability).



What is Analytic Combinatorics?

I It presumably means the use of mathematical analysis to
study problems in combinatorics.

I Analysis has many branches: real, complex, functional,
differential equations, measure theory, . . . . There are many
possible ways to apply it to combinatorics!

I The most common usage of the term refers to the application
of complex analysis to combinatorial enumeration (counting,
discrete probability).



Word cloud from our book

06/10/2020 Word Art

about:blank 1/1



Karp vs Knuth?

I Very roughly, there have been two schools of algorithms
researchers.

I One (related to Complexity Theory) cares about P vs NP and
big-O (or looser) approximation.

I The other (Analysis of Algorithms — AofA) cares about
constant factors and improving polynomial-time algorithms.
Big names: Knuth, Sedgewick, Flajolet.



Karp vs Knuth?

I Very roughly, there have been two schools of algorithms
researchers.

I One (related to Complexity Theory) cares about P vs NP and
big-O (or looser) approximation.

I The other (Analysis of Algorithms — AofA) cares about
constant factors and improving polynomial-time algorithms.
Big names: Knuth, Sedgewick, Flajolet.



Karp vs Knuth?

I Very roughly, there have been two schools of algorithms
researchers.

I One (related to Complexity Theory) cares about P vs NP and
big-O (or looser) approximation.

I The other (Analysis of Algorithms — AofA) cares about
constant factors and improving polynomial-time algorithms.
Big names: Knuth, Sedgewick, Flajolet.



AofA and analytic combinatorics

I Basic principle of AofA: detailed probabilistic analysis of large
combinatorial structures gives insight into performance of
algorithms.

I Basic mathematical question: Given a sequence (an) of
relevance, derive a tight asymptotic approximation for an.

I That is, find a simply understood sequence (bn) with
limn→∞ an/bn = 1. Goes beyond big-O and even big-Theta.

I Analytic combinatorics developed for AofA also helps to
devise random generation algorithms and test random number
generators.

I Analytic combinatorics has many applications to information
theory, statistical physics, probability and stochastic processes,
bioinformatics . . . .
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Classic AofA problems

I an = expected running time of your particular flavor of
quicksort on randomly shuffled input: internal path length of
binary search tree;

I an = expected number of occurrences of a given pattern
(substring, regular expression) in a large random text, or
waiting time until first occurrence;

I an = expected number of entries in an open addressing hash
table before first collision occurs: random mappings, balls in
bins;

I an = expected height of a binary search tree grown by
random insertions.

Precise answers to these are known, and the variance and entire
limiting distributions are known in most cases.



The foundational method of analytic combinatorics

1. Given a sequence (an) of interest, express it recursively
somehow.

2. Express an as the Maclaurin coefficient of an analytic
function, the generating function.

3. Using the form of this function, derive information about an.

This procedure goes back at least to de Moivre (1730) in the study
of discrete probability. Step 2 is the discrete analog of the Laplace
transform and Step 3 to inverting it — typical techniques in
solving differential equations.
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Example (Fibonacci)

I Consider the Fibonacci numbers defined by the recurrence
relation

an =

{
an−1 + an−2 n ≥ 2

n n ∈ {0, 1}.

I The generating function F (x) =
∑

n≥0 anx
n is easily seen to

satisfy the linear equation (1− x− x2)F (x) = x and hence is
a rational function.

I Partial fraction decomposition yields
x

1−x−x2 = 1√
5

(
1

1−θx −
1

1+θ−1x

)
where θ = 1+

√
5

2 ≈ 1.618 is

the reciprocal of the positive root of the denominator.

I Thus by geometric series expansion

an =
1√
5

(
θn − (−θ)−n

)
∼ 1√

5
θn.
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The key principles of coefficient extraction

I The location of dominant points of the singular variety V of
the GF determines the exponential growth rate of coefficients;

I The type of singularity determines subexponential factors.
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Example (Finding GF the modern way)

I A binary tree is either a single external node or an internal
node connected to a pair of binary trees. Let T be the class
of binary trees:

T = {ext} ∪ {int} × T × T .

I In terms of a formal grammar

< tree >=< ext >|< int >< tree >< tree > .

I Give < ext > weight a and < int > weight b to obtain the
GF enumerating binary trees by total weight:

T (z) = za + zbT (z)2.

I Special cases: a = 0, b = 1 counts trees by internal nodes;
a = 1, b = 0 by external nodes; a = b = 1 by total nodes.

I Every unambiguous context-free language leads to an
algebraic equation for the GF in a similar way.
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Alternative method of deriving asymptotics from GF

I A more general method uses Cauchy’s Integral Formula

an =
1

2πi

∫
C
F (z)z−n

dz

z

for some small circle Cε of radius ε enclosing the origin.

I We can expand it just beyond z = θ−1, picking up a residue:

an =
1

2πi

∫
Cθ−1+ε

F (z)z−n
dz

z
− Res(F (z)z−n−1; θ−1).

I The residue at the simple pole is easily calculated as

(θ−1)−n Res(zF (z); θ−1) = θn lim
z→θ−1

(z−θ−1)zF (z) = −θn 1

θ + θ−1

and the integral is exponentially smaller because it is bounded
by K(θ−1 + ε)−n. Thus we eventually get the same
asymptotic result.
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Generic case: asymptotics from univariate GFs

I Rational GF: an ∼ αρn where 1/ρ is the smallest modulus
root of the denominator.

I Catalan numbers have an algebraic irrational GF, the
asymptotics look like 4n/

√
πn3, which is typical.

I Periodicity can be handled easily, as can exponentially smaller
correction terms.

I Everything is effectively computable for rational and algebraic
GFs.
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Sample of interesting multivariate problems

I Enumerating lattice paths restricted to the positive quadrant
(generalized gambler’s ruin problems).

I Quantum random walk in d dimensions: determine the
feasible region.

I Tiling models from statistical physics: determine the frozen
region.

I Partition functions in queueing networks: numerical
approximation for large parameter values.

I Probability limit laws (e.g. limiting distribution of the number
k of occurrences of a fixed substring in a random string of
length n).



Example (Delannoy walks)

I We count walks on the lattice Z2 starting at (0, 0) and ending
at (r, s), with each step chosen from {↑,→,↗}.

I The recurrence is

ars =


ar−1,s−1 + ar−1,s + ar,s−1 if r > 1, s > 1

1 (r, s) = (0, 0)

0 otherwise.

and GF is (1− x− y − xy)−1.

I How to compute asymptotics for ar,s for large r + s?
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Technical difficulties in the multivariate case

I Deriving multivariate GFs is often not much harder than in
the univariate case.

I However analysing them is much harder, even for rational
functions:
I Model: how should we go to infinity, to take asymptotics?
I Algebra: partial fraction decomposition does not apply in

general.
I Geometry: the singular variety V is more complicated.

I it does not consist of isolated points, and may self-intersect;
I Topology of Cd \ V is much more complicated.

I Analysis: the (Leray) residue formula is much harder to use.
I Computation: harder owing to the curse of dimensionality.
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The ACSV project

I Robin Pemantle (UPenn) and I began a systematic analysis of
multivariate rational GFs — see https://acsvproject.org.

I Currently producing – with Steve Melczer (Waterloo) – the
2nd edition of our monograph with Cambridge University
Press.

I Methods and results have been used in coding/information
theory, number theory, string theory, statistical physics,
quantum gravity, mathematical biology, chemistry, . . . .

I Formulae require substantial computer algebra computation,
unlike the univariate case. We have Sage code implementing
many of the calculations.

https://acsvproject.org
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General procedure for coefficient asymptotics

1. Express ar using the Cauchy Integral Formula.

2. Choose direction of asymptotics.

3. Use residue theory to express ar in terms of integrals over
small cycles around contributing points.

4. Asymptotically approximate by the dominant integrals.

5. Evaluate the dominant integrals somehow!

I All steps were done in the univariate case, but Steps 2 and 5
are trivial, and the others are trivial for rational functions.

I Generally, Steps 3 and 5 are the hardest. Step 5 depends
greatly on the local geometry of the singularity.
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Outline of (generic) results achieved so far in ACSV project

I Asymptotics in direction r are determined by the geometry of
V near a (finite) set, crit(r), of critical points which is
computable via polynomial algebra.

I To compute asymptotics in direction r, we may restrict to a
single contributing point z∗(r) lying in the positive orthant.

I There is an asymptotic series A(z∗) for ar, depending on the
local geometry of V near z∗; each term is computable from
finitely many derivatives of G and H at z∗.

I This yields
ar ∼ A(z∗)

where the expansion is uniform on compact cones of
directions, provided the geometry does not change.
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Asymptotic formula in simplest case

Theorem (Smooth point formula in dimension 2)

Suppose that F = G/H has a strictly minimal simple pole at
p = (z∗, w∗).
Then when r, s→∞ on the ray (rwHw − szHz)|p = 0 ,

ars = (z∗)−r(w∗)−sCs−1/2
(
1 +O(s−1)

)
and if the Hessian Q of H ◦ exp is nonzero then

C =

[
G(p)√

2π

√
−wHw(p)

sQ(p)

]
.

I The lack of symmetry is illusory, since wHw/s = zHz/r at p.
I Here p is given, but we can vary p and obtain asymptotics

that are uniform in the direction.
I There is a full asymptotic expansion in descending powers of s
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Delannoy walk asymptotics

I Uniformly for r/s, s/r away from 0

ars ∼
[

r

∆− s

]r [ s

∆− r

]s√ rs

2π∆(r + s−∆)2
.

where ∆ =
√
r2 + s2.

I Vastly many problems involving walks, sequences, sums of IID
random variables are of similar difficulty level.
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Delannoy continued — numerical precision

F4n,3n = 432n
(
a1n

−1/2 + a2n
−3/2 +O(n−5/2)

)
as n→∞

where

a1 =

√
2
√

3
√

5

10
√
π
≈ 0.3090193616

a2 = −
√

2
√

3
√

5

288
√
π
≈ −0.01072983895

Compare with actual values:
n 1 2 4 8 16

Fnαc
nα 0.299 0.215 0.153 0.109 0.077

a1n
−1/2 0.309 0.219 0.155 0.109 0.077

a1n
−1/2 + a2n

−3/2 0.299 0.215 0.153 0.109 0.077
1-term rel. % error 3 1.7 0.87 0.43 0.22
2-term rel. % error 0.1 0.025 0.006 0.0014 0.00035



Next simplest case - double point

Theorem (Transverse double point formula in dimension 2)

Suppose that F = G/H has a strictly minimal pole at
p = (z∗, w∗), which is a double point of V such that G(p) 6= 0.
Then there is a nonempty cone K(p) of directions such that as
r, s→∞ with (r, s) in K(p),

ars ∼ (z∗)
−r(w∗)

−s
[
C +O(e−c(r+s))

]
where C = G(p)√

(z∗w∗)2 Q(p)
and Q is the Hessian of H.

I Note that
I the expansion holds uniformly away from the boundary of

K(p);
I the hypothesis G(p) 6= 0 is necessary.
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Example (Number of successes in a coin-flipping game)

I Consider repeatedly flipping a biased coin where heads and
tails are swapped partway through. In other words the coin
will be biased so that p = 2/3 for the first n flips, and
p = 1/3 thereafter.

I A player desires to get r heads and s tails and is allowed to
choose n. On average, how many choices of n ≤ r + s will be
winning choices?

I The GF is readily computed to be

F (x, y) =
1(

1− 1
3x−

2
3y
) (

1− 2
3x−

1
3y
) .

I By Theorem 2 the answer is asymptotically 3 up to
exponentially small error, whenever r/(r + s) stays in any
compact subinterval of (1/3, 2/3).



Example (Number of successes in a coin-flipping game)

I Consider repeatedly flipping a biased coin where heads and
tails are swapped partway through. In other words the coin
will be biased so that p = 2/3 for the first n flips, and
p = 1/3 thereafter.

I A player desires to get r heads and s tails and is allowed to
choose n. On average, how many choices of n ≤ r + s will be
winning choices?

I The GF is readily computed to be

F (x, y) =
1(

1− 1
3x−

2
3y
) (

1− 2
3x−

1
3y
) .

I By Theorem 2 the answer is asymptotically 3 up to
exponentially small error, whenever r/(r + s) stays in any
compact subinterval of (1/3, 2/3).



Example (Number of successes in a coin-flipping game)

I Consider repeatedly flipping a biased coin where heads and
tails are swapped partway through. In other words the coin
will be biased so that p = 2/3 for the first n flips, and
p = 1/3 thereafter.

I A player desires to get r heads and s tails and is allowed to
choose n. On average, how many choices of n ≤ r + s will be
winning choices?

I The GF is readily computed to be

F (x, y) =
1(

1− 1
3x−

2
3y
) (

1− 2
3x−

1
3y
) .

I By Theorem 2 the answer is asymptotically 3 up to
exponentially small error, whenever r/(r + s) stays in any
compact subinterval of (1/3, 2/3).



Example (Number of successes in a coin-flipping game)

I Consider repeatedly flipping a biased coin where heads and
tails are swapped partway through. In other words the coin
will be biased so that p = 2/3 for the first n flips, and
p = 1/3 thereafter.

I A player desires to get r heads and s tails and is allowed to
choose n. On average, how many choices of n ≤ r + s will be
winning choices?

I The GF is readily computed to be

F (x, y) =
1(

1− 1
3x−

2
3y
) (

1− 2
3x−

1
3y
) .

I By Theorem 2 the answer is asymptotically 3 up to
exponentially small error, whenever r/(r + s) stays in any
compact subinterval of (1/3, 2/3).



Example (diameters of random Cayley graphs)

I From the set [n] := {1, ..., n}, a collection of t disjoint pairs is
named. Then a k element subset, S ⊆ [n] is chosen. Let
a(n, k, t) be the number of such S that fail to contain as a
subset any of the t pairs.

I The GF turns out to be

1

(1− x(1 + y)) (1− zx2(1 + 2y))
.

I From a general result similar to the last two, we obtain

a(n, k, t) ∼ C
(
k

n
,
t

n

)
n−1/2x−n∗ y−k∗ z−t∗

where x∗, y∗, z∗ each satisfy an explicitly given quadratic in
n, k and C is explicitly given.
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Nontrivial extensions that we know how to do

I Arbitrary dimension, smooth/multiple point geometry of
singularities

I Quadratic cone singularities
I lattice tiling models

I Continuum of contributing points
I quantum random walks
I vector partition functions
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Extensions that we don’t yet know how to do

I Algebraic GFs (some ideas on representation as diagonals of
rational functions)

I Limiting directions (how do asymptotics patch together on
boundaries of cones?)

I Noncombinatorial problems (finding dominant points is
harder; need Morse theory, probably)

I Complicated local geometry of singularities (arises in some
tiling models)
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Example (Stationary distribution in an edge-flipping model on
graphs)

I Choose an edge uniformly at random and with probability p
(resp. 1− p) turn both its endpoints blue (resp. red).

I The stationary distribution of this Markov chain (due to
Diaconis) is (up to a simple transformation) encoded for
complete graphs by

f(x, y) =
1− x(1 + y)√

1− 2x(1 + y)− x2(1− y)2
.

I The coefficients of this GF are essentially the probability that
s vertices are blue in the complete graph Kr.

I How to compute asymptotics as r, s→∞? We don’t know
what to do with irrational algebraic GFs.
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Work in progress on algebraic GFs

I Conjecturally (Christol 1990), every “not obviously ruled out”
GF arises as a diagonal of a rational function.

I Every algebraic d-variate GF arises as the diagonal of a
rational function in 2d variables, and if we relax the definition
of diagonal we can replace this by d+ 1 (Safonov, 2000).

I The main problem is that the rational GF may not preserve
nice properties of the original:
I The coefficients may no longer be nonnegative.
I Contributing critical points may be at infinity.

I We are currently working on implementing Safonov’s
algorithm and dealing with these issues.
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Example (Binary trees)

I Binary trees are counted by
f(x) =

∑
n anx

n = (1−
√

1− 4x)/2 with minimal
polynomial P (x, y) = y2 − y + x.

I By standard methods (Furstenberg 1967) an = bnn where b is
the coefficient sequence of F (x, y) = y(1− 2y)/(1− x− y).

I This falls under our results above, EXCEPT the relevant
dominant point is (1/2, 1/2) and the numerator vanishes
there.

I We needed to derive explicit formulae for higher order terms.

I This turns out to be doable, and we obtain the correct answer

an ∼ 4n−1/
√
πn3.
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