


New algorithms for one-sided matching

Mark C. Wilson

UMass Amherst
Department of Mathematics and Statistics

2020-03-11



New algorithms for matching

Introduction and motivation

Example

I We have to allocate students to summer research projects.
Each student should get a single project. Each project has a
single supervisor.

I We can consider this as one-sided matching if supervisors’
preferences are ignored, or two-sided matching if they are
considered.

I If every student has a different first choice project, and
supervisors have no preferences, it is easy, but otherwise?

I The same basic problem (with some variations) occurs in
matching interns to hospitals, military staff to bases, children
to public schools, volunteer teachers to schools, . . .



New algorithms for matching

Introduction and motivation

Example

I We have to allocate students to summer research projects.
Each student should get a single project. Each project has a
single supervisor.

I We can consider this as one-sided matching if supervisors’
preferences are ignored, or two-sided matching if they are
considered.

I If every student has a different first choice project, and
supervisors have no preferences, it is easy, but otherwise?

I The same basic problem (with some variations) occurs in
matching interns to hospitals, military staff to bases, children
to public schools, volunteer teachers to schools, . . .



New algorithms for matching

Introduction and motivation

Example

I We have to allocate students to summer research projects.
Each student should get a single project. Each project has a
single supervisor.

I We can consider this as one-sided matching if supervisors’
preferences are ignored, or two-sided matching if they are
considered.

I If every student has a different first choice project, and
supervisors have no preferences, it is easy, but otherwise?

I The same basic problem (with some variations) occurs in
matching interns to hospitals, military staff to bases, children
to public schools, volunteer teachers to schools, . . .



New algorithms for matching

Introduction and motivation

Example

I We have to allocate students to summer research projects.
Each student should get a single project. Each project has a
single supervisor.

I We can consider this as one-sided matching if supervisors’
preferences are ignored, or two-sided matching if they are
considered.

I If every student has a different first choice project, and
supervisors have no preferences, it is easy, but otherwise?

I The same basic problem (with some variations) occurs in
matching interns to hospitals, military staff to bases, children
to public schools, volunteer teachers to schools, . . .



New algorithms for matching

Introduction and motivation

Resource allocation basics

I We have a set of n agents and a set of m items.

I We want to assign a set of items to each agent.

I Sometimes the items have preferences over the agents. They
may actually be agents themselves (two-sided matching).

I When m 6= n there are several complications, so we stick to
the case m = n today.

I We stick to the deterministic case today - random allocations
are also very interesting but lead to many subtleties.



New algorithms for matching

Introduction and motivation

Resource allocation basics

I We have a set of n agents and a set of m items.

I We want to assign a set of items to each agent.

I Sometimes the items have preferences over the agents. They
may actually be agents themselves (two-sided matching).

I When m 6= n there are several complications, so we stick to
the case m = n today.

I We stick to the deterministic case today - random allocations
are also very interesting but lead to many subtleties.



New algorithms for matching

Introduction and motivation

Resource allocation basics

I We have a set of n agents and a set of m items.

I We want to assign a set of items to each agent.

I Sometimes the items have preferences over the agents. They
may actually be agents themselves (two-sided matching).

I When m 6= n there are several complications, so we stick to
the case m = n today.

I We stick to the deterministic case today - random allocations
are also very interesting but lead to many subtleties.



New algorithms for matching

Introduction and motivation

Resource allocation basics

I We have a set of n agents and a set of m items.

I We want to assign a set of items to each agent.

I Sometimes the items have preferences over the agents. They
may actually be agents themselves (two-sided matching).

I When m 6= n there are several complications, so we stick to
the case m = n today.

I We stick to the deterministic case today - random allocations
are also very interesting but lead to many subtleties.



New algorithms for matching

Introduction and motivation

Resource allocation basics

I We have a set of n agents and a set of m items.

I We want to assign a set of items to each agent.

I Sometimes the items have preferences over the agents. They
may actually be agents themselves (two-sided matching).

I When m 6= n there are several complications, so we stick to
the case m = n today.

I We stick to the deterministic case today - random allocations
are also very interesting but lead to many subtleties.



New algorithms for matching

Introduction and motivation

Two famous deterministic algorithms

I Serial dictatorship - order agents in some way; each in turn
chooses their most preferred object from those remaining.

I Boston school choice - allocate as many agents to their first
choice as possible, then as many of those remaining to their
second, etc, breaking ties according to a fixed order of agents.



New algorithms for matching

Introduction and motivation

Two famous deterministic algorithms

I Serial dictatorship - order agents in some way; each in turn
chooses their most preferred object from those remaining.

I Boston school choice - allocate as many agents to their first
choice as possible, then as many of those remaining to their
second, etc, breaking ties according to a fixed order of agents.



New algorithms for matching

Introduction and motivation

Example (Famous one-sided algorithms)

I Suppose agents 1, 2, 3 have respective preferences
a � b � c, a � b � c, b � a � c.

I Serial dictatorship with the given order of agents results in the
allocation 1 : a, 2 : b, 3 : c.

I Boston gives 1 : a, 2 : c, 3 : b.



New algorithms for matching

Introduction and motivation

Example (Famous one-sided algorithms)

I Suppose agents 1, 2, 3 have respective preferences
a � b � c, a � b � c, b � a � c.

I Serial dictatorship with the given order of agents results in the
allocation 1 : a, 2 : b, 3 : c.

I Boston gives 1 : a, 2 : c, 3 : b.



New algorithms for matching

Introduction and motivation

Example (Famous one-sided algorithms)

I Suppose agents 1, 2, 3 have respective preferences
a � b � c, a � b � c, b � a � c.

I Serial dictatorship with the given order of agents results in the
allocation 1 : a, 2 : b, 3 : c.

I Boston gives 1 : a, 2 : c, 3 : b.



New algorithms for matching

Introduction and motivation

Properties of solutions

I Efficiency - if we improve some agent’s allocation we must
make another worse off.

I Strategyproofness - no incentive for agents to lie about
preferences.

I Fairness - no agent envies another’s item.

I Welfare - a combination of efficiency and fairness, measuring
overall happiness of agents.



New algorithms for matching

Introduction and motivation

Properties of solutions

I Efficiency - if we improve some agent’s allocation we must
make another worse off.

I Strategyproofness - no incentive for agents to lie about
preferences.

I Fairness - no agent envies another’s item.

I Welfare - a combination of efficiency and fairness, measuring
overall happiness of agents.



New algorithms for matching

Introduction and motivation

Properties of solutions

I Efficiency - if we improve some agent’s allocation we must
make another worse off.

I Strategyproofness - no incentive for agents to lie about
preferences.

I Fairness - no agent envies another’s item.

I Welfare - a combination of efficiency and fairness, measuring
overall happiness of agents.



New algorithms for matching

Introduction and motivation

Properties of solutions

I Efficiency - if we improve some agent’s allocation we must
make another worse off.

I Strategyproofness - no incentive for agents to lie about
preferences.

I Fairness - no agent envies another’s item.

I Welfare - a combination of efficiency and fairness, measuring
overall happiness of agents.



New algorithms for matching

Introduction and motivation

Properties of algorithms

Algorithm Fast Efficient Strategyproof Envy-free

SD 3 3 3 7

Boston 3 3 7 7

I Boston is easy to manipulate, and SD is clearly “unfair”.

I No algorithm can be envy-free in every situation.

I Thus we need to consider tradeoffs, and maybe there are new
algorithms that make a good compromise.



New algorithms for matching

Introduction and motivation

Properties of algorithms

Algorithm Fast Efficient Strategyproof Envy-free

SD 3 3 3 7

Boston 3 3 7 7

I Boston is easy to manipulate, and SD is clearly “unfair”.

I No algorithm can be envy-free in every situation.

I Thus we need to consider tradeoffs, and maybe there are new
algorithms that make a good compromise.



New algorithms for matching

Introduction and motivation

Properties of algorithms

Algorithm Fast Efficient Strategyproof Envy-free

SD 3 3 3 7

Boston 3 3 7 7

I Boston is easy to manipulate, and SD is clearly “unfair”.

I No algorithm can be envy-free in every situation.

I Thus we need to consider tradeoffs, and maybe there are new
algorithms that make a good compromise.



New algorithms for matching

Introduction and motivation

Main idea

I There is an inevitable tradeoff between the axiomatic
properties.

I Each axiom selects an “extreme point of algorithm space”.

I My main idea: good algorithms probably exist in the “interior
of algorithm space”, and we should look for them.

I We should search for algorithms that behave “well” on
“most” inputs.



New algorithms for matching

Introduction and motivation

Main idea

I There is an inevitable tradeoff between the axiomatic
properties.

I Each axiom selects an “extreme point of algorithm space”.

I My main idea: good algorithms probably exist in the “interior
of algorithm space”, and we should look for them.

I We should search for algorithms that behave “well” on
“most” inputs.



New algorithms for matching

Introduction and motivation

Main idea

I There is an inevitable tradeoff between the axiomatic
properties.

I Each axiom selects an “extreme point of algorithm space”.

I My main idea: good algorithms probably exist in the “interior
of algorithm space”, and we should look for them.

I We should search for algorithms that behave “well” on
“most” inputs.



New algorithms for matching

Introduction and motivation

Main idea

I There is an inevitable tradeoff between the axiomatic
properties.

I Each axiom selects an “extreme point of algorithm space”.

I My main idea: good algorithms probably exist in the “interior
of algorithm space”, and we should look for them.

I We should search for algorithms that behave “well” on
“most” inputs.



New algorithms for matching

Introduction and motivation

New algorithm: Yankee swap

I Inspired by a departmental Christmas party!

I All items are initially unmarked. Once marked, an item
remains marked. Agents are given a fixed order.

I Play proceeds in rounds. At the beginning of each round, the
next unmatched agent takes its top choice item. The previous
holder of the item becomes the current agent, and the round
continues. No agent may hold a given item more than once
per round.

I Each round ends when the current agent takes a previously
unmarked item.

I Termination occurs when there are no unmarked items left.



New algorithms for matching

Introduction and motivation

New algorithm: Yankee swap

I Inspired by a departmental Christmas party!

I All items are initially unmarked. Once marked, an item
remains marked. Agents are given a fixed order.

I Play proceeds in rounds. At the beginning of each round, the
next unmatched agent takes its top choice item. The previous
holder of the item becomes the current agent, and the round
continues. No agent may hold a given item more than once
per round.

I Each round ends when the current agent takes a previously
unmarked item.

I Termination occurs when there are no unmarked items left.



New algorithms for matching

Introduction and motivation

New algorithm: Yankee swap

I Inspired by a departmental Christmas party!

I All items are initially unmarked. Once marked, an item
remains marked. Agents are given a fixed order.

I Play proceeds in rounds. At the beginning of each round, the
next unmatched agent takes its top choice item. The previous
holder of the item becomes the current agent, and the round
continues. No agent may hold a given item more than once
per round.

I Each round ends when the current agent takes a previously
unmarked item.

I Termination occurs when there are no unmarked items left.



New algorithms for matching

Introduction and motivation

New algorithm: Yankee swap

I Inspired by a departmental Christmas party!

I All items are initially unmarked. Once marked, an item
remains marked. Agents are given a fixed order.

I Play proceeds in rounds. At the beginning of each round, the
next unmatched agent takes its top choice item. The previous
holder of the item becomes the current agent, and the round
continues. No agent may hold a given item more than once
per round.

I Each round ends when the current agent takes a previously
unmarked item.

I Termination occurs when there are no unmarked items left.



New algorithms for matching

Introduction and motivation

New algorithm: Yankee swap

I Inspired by a departmental Christmas party!

I All items are initially unmarked. Once marked, an item
remains marked. Agents are given a fixed order.

I Play proceeds in rounds. At the beginning of each round, the
next unmatched agent takes its top choice item. The previous
holder of the item becomes the current agent, and the round
continues. No agent may hold a given item more than once
per round.

I Each round ends when the current agent takes a previously
unmarked item.

I Termination occurs when there are no unmarked items left.



New algorithms for matching

Introduction and motivation

Example (Yankee Swap)

I Suppose agents 1, 2, 3 have respective preferences
a � b � c, a � b � c, b � a � c.

I In round 1, 1 takes a.

I In round 2, 2 takes a, then 1 takes b.

I In round 3, 3 takes b, 1 takes a, 2 takes b, 3 takes a, 1 takes c.

I Final allocation: 1 : c, 2 : b, 3 : a.



New algorithms for matching

Introduction and motivation

Example (Yankee Swap)

I Suppose agents 1, 2, 3 have respective preferences
a � b � c, a � b � c, b � a � c.

I In round 1, 1 takes a.

I In round 2, 2 takes a, then 1 takes b.

I In round 3, 3 takes b, 1 takes a, 2 takes b, 3 takes a, 1 takes c.

I Final allocation: 1 : c, 2 : b, 3 : a.



New algorithms for matching

Introduction and motivation

Example (Yankee Swap)

I Suppose agents 1, 2, 3 have respective preferences
a � b � c, a � b � c, b � a � c.

I In round 1, 1 takes a.

I In round 2, 2 takes a, then 1 takes b.

I In round 3, 3 takes b, 1 takes a, 2 takes b, 3 takes a, 1 takes c.

I Final allocation: 1 : c, 2 : b, 3 : a.



New algorithms for matching

Introduction and motivation

Example (Yankee Swap)

I Suppose agents 1, 2, 3 have respective preferences
a � b � c, a � b � c, b � a � c.

I In round 1, 1 takes a.

I In round 2, 2 takes a, then 1 takes b.

I In round 3, 3 takes b, 1 takes a, 2 takes b, 3 takes a, 1 takes c.

I Final allocation: 1 : c, 2 : b, 3 : a.



New algorithms for matching

Introduction and motivation

Example (Yankee Swap)

I Suppose agents 1, 2, 3 have respective preferences
a � b � c, a � b � c, b � a � c.

I In round 1, 1 takes a.

I In round 2, 2 takes a, then 1 takes b.

I In round 3, 3 takes b, 1 takes a, 2 takes b, 3 takes a, 1 takes c.

I Final allocation: 1 : c, 2 : b, 3 : a.



New algorithms for matching

Introduction and motivation

Properties of algorithms

Algorithm Fast Efficient Strategyproof Envy-free

SD 3 3 3 7

Boston 3 3 7 7

YS 3 7 7 7

I At first sight, YS doesn’t seem very competitive. However . . .



New algorithms for matching

Introduction and motivation

Top Trading Cycle (Shapley-Scarf 1974; attr. D. Gale)

I Assume each agent already is matched to an item (the initial
endowment).

I Each agent points to the agent holding its top choice.

I The resulting directed graph must have a cycle (why?). We
can reallocate along a cycle to make those agents happy.

I Remove the reallocated items and agents, and continue
(starting with 2nd preferences) until no more cycles exist.

I This runs in polynomial time, and yields an efficient allocation.



New algorithms for matching

Introduction and motivation

Top Trading Cycle (Shapley-Scarf 1974; attr. D. Gale)

I Assume each agent already is matched to an item (the initial
endowment).

I Each agent points to the agent holding its top choice.

I The resulting directed graph must have a cycle (why?). We
can reallocate along a cycle to make those agents happy.

I Remove the reallocated items and agents, and continue
(starting with 2nd preferences) until no more cycles exist.

I This runs in polynomial time, and yields an efficient allocation.



New algorithms for matching

Introduction and motivation

Top Trading Cycle (Shapley-Scarf 1974; attr. D. Gale)

I Assume each agent already is matched to an item (the initial
endowment).

I Each agent points to the agent holding its top choice.

I The resulting directed graph must have a cycle (why?). We
can reallocate along a cycle to make those agents happy.

I Remove the reallocated items and agents, and continue
(starting with 2nd preferences) until no more cycles exist.

I This runs in polynomial time, and yields an efficient allocation.



New algorithms for matching

Introduction and motivation

Top Trading Cycle (Shapley-Scarf 1974; attr. D. Gale)

I Assume each agent already is matched to an item (the initial
endowment).

I Each agent points to the agent holding its top choice.

I The resulting directed graph must have a cycle (why?). We
can reallocate along a cycle to make those agents happy.

I Remove the reallocated items and agents, and continue
(starting with 2nd preferences) until no more cycles exist.

I This runs in polynomial time, and yields an efficient allocation.



New algorithms for matching

Introduction and motivation

Top Trading Cycle (Shapley-Scarf 1974; attr. D. Gale)

I Assume each agent already is matched to an item (the initial
endowment).

I Each agent points to the agent holding its top choice.

I The resulting directed graph must have a cycle (why?). We
can reallocate along a cycle to make those agents happy.

I Remove the reallocated items and agents, and continue
(starting with 2nd preferences) until no more cycles exist.

I This runs in polynomial time, and yields an efficient allocation.



New algorithms for matching

Introduction and motivation

Properties of algorithms

Algorithm Fast Efficient Strategyproof Envy-free

SD 3 3 3 7

Boston 3 3 7 7

YS 3 7 7 7

YS+TTC 3 3 7 7

I YS followed by TTC is now efficient. Experiments show it
outperforms SD (and usually Boston) in welfare and envy. It
seems hard to manipulate strategically and feels “fairer”
because if an item is taken from us, we can steal it back later.



New algorithms for matching

Unified approach via two-sided matching

Two-sided matching: Gale-Shapley

I Each agent proposes to its items in descending order of
preference.

I If an item is unmatched, it accepts the proposal tentatively.

I If a better agent (more preferred by the item) comes along,
the item rejects the current one and accepts the new one.

I Each agent may propose at most once to each item (so
rejections are permanent), which guarantees termination.



New algorithms for matching

Unified approach via two-sided matching

Two-sided matching: Gale-Shapley

I Each agent proposes to its items in descending order of
preference.

I If an item is unmatched, it accepts the proposal tentatively.

I If a better agent (more preferred by the item) comes along,
the item rejects the current one and accepts the new one.

I Each agent may propose at most once to each item (so
rejections are permanent), which guarantees termination.



New algorithms for matching

Unified approach via two-sided matching

Two-sided matching: Gale-Shapley

I Each agent proposes to its items in descending order of
preference.

I If an item is unmatched, it accepts the proposal tentatively.

I If a better agent (more preferred by the item) comes along,
the item rejects the current one and accepts the new one.

I Each agent may propose at most once to each item (so
rejections are permanent), which guarantees termination.



New algorithms for matching

Unified approach via two-sided matching

Two-sided matching: Gale-Shapley

I Each agent proposes to its items in descending order of
preference.

I If an item is unmatched, it accepts the proposal tentatively.

I If a better agent (more preferred by the item) comes along,
the item rejects the current one and accepts the new one.

I Each agent may propose at most once to each item (so
rejections are permanent), which guarantees termination.



New algorithms for matching

Unified approach via two-sided matching

Connecting one- and two-sided matching

I We can give fictitious preferences to the items, and run
Gale-Shapley with these to get an allocation.

I To get more interesting algorithms, we can modify the items’
preferences dynamically based on the proposals received.

I Main ideas: accept first (prefer agents in order they have
proposed) and accept last (prefer them in reverse order).
There may be other good ideas.

I Yankee Swap uses accept-last, since the current agent trying
to steal an item is always accepted. SD and Boston use
accept-first.



New algorithms for matching

Unified approach via two-sided matching

Connecting one- and two-sided matching

I We can give fictitious preferences to the items, and run
Gale-Shapley with these to get an allocation.

I To get more interesting algorithms, we can modify the items’
preferences dynamically based on the proposals received.

I Main ideas: accept first (prefer agents in order they have
proposed) and accept last (prefer them in reverse order).
There may be other good ideas.

I Yankee Swap uses accept-last, since the current agent trying
to steal an item is always accepted. SD and Boston use
accept-first.



New algorithms for matching

Unified approach via two-sided matching

Connecting one- and two-sided matching

I We can give fictitious preferences to the items, and run
Gale-Shapley with these to get an allocation.

I To get more interesting algorithms, we can modify the items’
preferences dynamically based on the proposals received.

I Main ideas: accept first (prefer agents in order they have
proposed) and accept last (prefer them in reverse order).
There may be other good ideas.

I Yankee Swap uses accept-last, since the current agent trying
to steal an item is always accepted. SD and Boston use
accept-first.



New algorithms for matching

Unified approach via two-sided matching

Connecting one- and two-sided matching

I We can give fictitious preferences to the items, and run
Gale-Shapley with these to get an allocation.

I To get more interesting algorithms, we can modify the items’
preferences dynamically based on the proposals received.

I Main ideas: accept first (prefer agents in order they have
proposed) and accept last (prefer them in reverse order).
There may be other good ideas.

I Yankee Swap uses accept-last, since the current agent trying
to steal an item is always accepted. SD and Boston use
accept-first.



New algorithms for matching

Unified approach via two-sided matching

Memory

I We can assume the history of proposals is forgotten at the
end of each round (each time a new item is matched).

I This allows another chance for agents to propose to items
they have already been rejected by, and intuitively may lead to
higher welfare by avoiding local maxima.

I Serial Dictatorship and Boston have permanent memory,
Yankee Swap has temporary memory.



New algorithms for matching

Unified approach via two-sided matching

Memory

I We can assume the history of proposals is forgotten at the
end of each round (each time a new item is matched).

I This allows another chance for agents to propose to items
they have already been rejected by, and intuitively may lead to
higher welfare by avoiding local maxima.

I Serial Dictatorship and Boston have permanent memory,
Yankee Swap has temporary memory.



New algorithms for matching

Unified approach via two-sided matching

Memory

I We can assume the history of proposals is forgotten at the
end of each round (each time a new item is matched).

I This allows another chance for agents to propose to items
they have already been rejected by, and intuitively may lead to
higher welfare by avoiding local maxima.

I Serial Dictatorship and Boston have permanent memory,
Yankee Swap has temporary memory.



New algorithms for matching

Unified approach via two-sided matching

Order of proposals

I For standard Gale-Shapley the order of proposals does not
matter.

I In our dynamic preference setup it does. There are two
obvious choices:

I Queue-based: first in, first out;
I Stack-based: last in, first out.

I Serial Dictatorship uses stack, Boston uses queue, Yankee
Swap uses stack.



New algorithms for matching

Unified approach via two-sided matching

Order of proposals

I For standard Gale-Shapley the order of proposals does not
matter.

I In our dynamic preference setup it does. There are two
obvious choices:

I Queue-based: first in, first out;
I Stack-based: last in, first out.

I Serial Dictatorship uses stack, Boston uses queue, Yankee
Swap uses stack.



New algorithms for matching

Unified approach via two-sided matching

Order of proposals

I For standard Gale-Shapley the order of proposals does not
matter.

I In our dynamic preference setup it does. There are two
obvious choices:
I Queue-based: first in, first out;

I Stack-based: last in, first out.

I Serial Dictatorship uses stack, Boston uses queue, Yankee
Swap uses stack.



New algorithms for matching

Unified approach via two-sided matching

Order of proposals

I For standard Gale-Shapley the order of proposals does not
matter.

I In our dynamic preference setup it does. There are two
obvious choices:
I Queue-based: first in, first out;
I Stack-based: last in, first out.

I Serial Dictatorship uses stack, Boston uses queue, Yankee
Swap uses stack.



New algorithms for matching

Unified approach via two-sided matching

Order of proposals

I For standard Gale-Shapley the order of proposals does not
matter.

I In our dynamic preference setup it does. There are two
obvious choices:
I Queue-based: first in, first out;
I Stack-based: last in, first out.

I Serial Dictatorship uses stack, Boston uses queue, Yankee
Swap uses stack.



New algorithms for matching

Unified approach via two-sided matching

Old algorithms in this framework

I Serial Dictatorship: permanent memory, stack, accept-first;

I Boston: permanent memory, queue, accept-last;

I Yankee Swap: temporary memory, stack, accept-last.

This gives a motivation for the consideration of Yankee Swap,
which seemed somewhat arbitrary before.



New algorithms for matching

Unified approach via two-sided matching

Old algorithms in this framework

I Serial Dictatorship: permanent memory, stack, accept-first;

I Boston: permanent memory, queue, accept-last;

I Yankee Swap: temporary memory, stack, accept-last.

This gives a motivation for the consideration of Yankee Swap,
which seemed somewhat arbitrary before.



New algorithms for matching

Unified approach via two-sided matching

Old algorithms in this framework

I Serial Dictatorship: permanent memory, stack, accept-first;

I Boston: permanent memory, queue, accept-last;

I Yankee Swap: temporary memory, stack, accept-last.

This gives a motivation for the consideration of Yankee Swap,
which seemed somewhat arbitrary before.



New algorithms for matching

Unified approach via two-sided matching

What about the other algorithms?

I There are 2 choices for memory/no memory, 2 for
queue/stack, 2 for accept first/accept last.

I We can also append TTC to any of the algorithms.

I We can show that all the Accept-First ones are efficient, and
none of the Accept-Last ones are.

I This yields 23 + 4 = 12 algorithms, so there are 9 more to
discuss.



New algorithms for matching

Unified approach via two-sided matching

What about the other algorithms?

I There are 2 choices for memory/no memory, 2 for
queue/stack, 2 for accept first/accept last.

I We can also append TTC to any of the algorithms.

I We can show that all the Accept-First ones are efficient, and
none of the Accept-Last ones are.

I This yields 23 + 4 = 12 algorithms, so there are 9 more to
discuss.



New algorithms for matching

Unified approach via two-sided matching

What about the other algorithms?

I There are 2 choices for memory/no memory, 2 for
queue/stack, 2 for accept first/accept last.

I We can also append TTC to any of the algorithms.

I We can show that all the Accept-First ones are efficient, and
none of the Accept-Last ones are.

I This yields 23 + 4 = 12 algorithms, so there are 9 more to
discuss.



New algorithms for matching

Unified approach via two-sided matching

What about the other algorithms?

I There are 2 choices for memory/no memory, 2 for
queue/stack, 2 for accept first/accept last.

I We can also append TTC to any of the algorithms.

I We can show that all the Accept-First ones are efficient, and
none of the Accept-Last ones are.

I This yields 23 + 4 = 12 algorithms, so there are 9 more to
discuss.



New algorithms for matching

Evaluation of algorithms

Behavior of algorithms on standard profile:
3 agents a � b � c � d, 1 agent b � a � c � d

Algorithm Output matching Number of proposals

PFS 1:a, 2:b, 3:c, 4:d 10
PFQ 1:a, 2:c, 3:d, 4:b 9
PLS 1:d, 2:c, 3:a, 4:b 9
PLQ 1:d, 2:c, 3:b, 4:a 10
TFS 1:d, 2:a, 3:c, 4:b 18
TFQ 1:a, 2:b, 3:d, 4:c 33
TLS 1:b, 2:a, 3:d, 4:c 18
TLQ 1:a, 2:b, 3:d, 4:c 21



New algorithms for matching

Evaluation of algorithms

A new fairness criterion

I All our algorithms require a predetermined order of agents.
We can choose this randomly, and therefore achieve fairness
ex ante, but sometimes ex post fairness is what we need.

I Also, randomness may not be acceptable in some situations.

I We call an algorithm order-fair if for all i, j the expected rank
of the item allocated to the ith agent is the same as for the
jth agent, as we average over all preference profiles.

I SD is very far from order-fair, since the last agent is much
worse off than the first one. Boston is better, but still heavily
biased toward early agents.



New algorithms for matching

Evaluation of algorithms

A new fairness criterion

I All our algorithms require a predetermined order of agents.
We can choose this randomly, and therefore achieve fairness
ex ante, but sometimes ex post fairness is what we need.

I Also, randomness may not be acceptable in some situations.

I We call an algorithm order-fair if for all i, j the expected rank
of the item allocated to the ith agent is the same as for the
jth agent, as we average over all preference profiles.

I SD is very far from order-fair, since the last agent is much
worse off than the first one. Boston is better, but still heavily
biased toward early agents.



New algorithms for matching

Evaluation of algorithms

A new fairness criterion

I All our algorithms require a predetermined order of agents.
We can choose this randomly, and therefore achieve fairness
ex ante, but sometimes ex post fairness is what we need.

I Also, randomness may not be acceptable in some situations.

I We call an algorithm order-fair if for all i, j the expected rank
of the item allocated to the ith agent is the same as for the
jth agent, as we average over all preference profiles.

I SD is very far from order-fair, since the last agent is much
worse off than the first one. Boston is better, but still heavily
biased toward early agents.



New algorithms for matching

Evaluation of algorithms

A new fairness criterion

I All our algorithms require a predetermined order of agents.
We can choose this randomly, and therefore achieve fairness
ex ante, but sometimes ex post fairness is what we need.

I Also, randomness may not be acceptable in some situations.

I We call an algorithm order-fair if for all i, j the expected rank
of the item allocated to the ith agent is the same as for the
jth agent, as we average over all preference profiles.

I SD is very far from order-fair, since the last agent is much
worse off than the first one. Boston is better, but still heavily
biased toward early agents.



New algorithms for matching

Evaluation of algorithms

Normalized order bias of our 8 basic algorithms



New algorithms for matching

Evaluation of algorithms

Some observations about the new algorithms

I None of the new algorithms clearly dominate the old in
efficiency, fairness, or welfare, but in some situations they do
much better.

I The temporary-memory equivalent of SD proceeds like SD in
each round. It favours the last agent over all the others, and
may be appropriate for situations in which a single agent
should be privileged.

I Interestingly, the queue-based algorithms are much fairer than
the stack-based ones, and the queue analogue of Yankee Swap
has amazingly small bias.



New algorithms for matching

Evaluation of algorithms

Some observations about the new algorithms

I None of the new algorithms clearly dominate the old in
efficiency, fairness, or welfare, but in some situations they do
much better.

I The temporary-memory equivalent of SD proceeds like SD in
each round. It favours the last agent over all the others, and
may be appropriate for situations in which a single agent
should be privileged.

I Interestingly, the queue-based algorithms are much fairer than
the stack-based ones, and the queue analogue of Yankee Swap
has amazingly small bias.



New algorithms for matching

Evaluation of algorithms

Some observations about the new algorithms

I None of the new algorithms clearly dominate the old in
efficiency, fairness, or welfare, but in some situations they do
much better.

I The temporary-memory equivalent of SD proceeds like SD in
each round. It favours the last agent over all the others, and
may be appropriate for situations in which a single agent
should be privileged.

I Interestingly, the queue-based algorithms are much fairer than
the stack-based ones, and the queue analogue of Yankee Swap
has amazingly small bias.



New algorithms for matching

Evaluation of algorithms

Egalitarian welfare of selected algorithms



New algorithms for matching

Evaluation of algorithms

Where to from here?

I For random preferences we should be able to study
performance of some of these algorithms analytically (e.g.
Boston), and the rest we can do by simulation.

I Choosing realistic artificial preferences for simulation is tricky.
We can use models based on agents imitating others.

I We can create random allocation algorithms by simply
randomizing the agent order, making it easier to avoid envy.

I There is still much that is unexplored. Who knows what other
algorithms are out there?



New algorithms for matching

Evaluation of algorithms

Where to from here?

I For random preferences we should be able to study
performance of some of these algorithms analytically (e.g.
Boston), and the rest we can do by simulation.

I Choosing realistic artificial preferences for simulation is tricky.
We can use models based on agents imitating others.

I We can create random allocation algorithms by simply
randomizing the agent order, making it easier to avoid envy.

I There is still much that is unexplored. Who knows what other
algorithms are out there?



New algorithms for matching

Evaluation of algorithms

Where to from here?

I For random preferences we should be able to study
performance of some of these algorithms analytically (e.g.
Boston), and the rest we can do by simulation.

I Choosing realistic artificial preferences for simulation is tricky.
We can use models based on agents imitating others.

I We can create random allocation algorithms by simply
randomizing the agent order, making it easier to avoid envy.

I There is still much that is unexplored. Who knows what other
algorithms are out there?



New algorithms for matching

Evaluation of algorithms

Where to from here?

I For random preferences we should be able to study
performance of some of these algorithms analytically (e.g.
Boston), and the rest we can do by simulation.

I Choosing realistic artificial preferences for simulation is tricky.
We can use models based on agents imitating others.

I We can create random allocation algorithms by simply
randomizing the agent order, making it easier to avoid envy.

I There is still much that is unexplored. Who knows what other
algorithms are out there?


	Introduction and motivation
	Unified approach via two-sided matching
	Evaluation of algorithms

