Asymptotic enumeration in several variables: integration and computation

Mark C. Wilson, UMass Amherst

AMC seminar 2019-10-29

My research profile

- Asymptotics of multivariate generating functions and applications to combinatorial and probabilistic models
- Network science and applications in social science
- Social choice theory, voting and electoral systems
- Relations with computer science: algorithms, data science
- See https://markcwilson.site for more.

My research profile

- Asymptotics of multivariate generating functions and applications to combinatorial and probabilistic models
- Network science and applications in social science
- Social choice theory, voting and electoral systems
- Relations with computer science: algorithms, data science
- See https://markcwilson.site for more.

My research profile

- Asymptotics of multivariate generating functions and applications to combinatorial and probabilistic models
- Network science and applications in social science
- Social choice theory, voting and electoral systems
- Relations with computer science: algorithms, data science
- See https://markcwilson.site for more.

My research profile

- Asymptotics of multivariate generating functions and applications to combinatorial and probabilistic models
- Network science and applications in social science
- Social choice theory, voting and electoral systems
- Relations with computer science: algorithms, data science
- See https://markcwilson.site for more.

My research profile

- Asymptotics of multivariate generating functions and applications to combinatorial and probabilistic models
- Network science and applications in social science
- Social choice theory, voting and electoral systems
- Relations with computer science: algorithms, data science
- See https://markcwilson.site for more.

Today's talk

- \checkmark Asymptotics of multivariate generating functions and applications to combinatorics and probability
- Network science and applications in social science
- Social choice theory, voting and electoral systems
- Relations with computer science: algorithms, data science
- See http://ACSVproject.org for more on this project, or talk to me about any project.

Sample applications

- Our machinery has been applied to, among others: quantum walks; queuing systems; RNA secondary structure; sequence alignment; random tilings; special function theory; integrable systems in statistical mechanics.
- Lattice walk models are ubiquitous in combinatorics, owing to nice bijections with many other structures. They also arise in nonparametric statistics, and via random walk models.
- First basic example: estimate $a_{r s}$, which counts nearest-neighbor walks in \mathbb{Z}^{2}, going from $(0,0)$ to (r, s), with steps in
- Second basic example: $F=1 / H=\sum_{r . s} a_{r s} x^{r} y^{s}$ where

Sample applications

- Our machinery has been applied to, among others: quantum walks; queuing systems; RNA secondary structure; sequence alignment; random tilings; special function theory; integrable systems in statistical mechanics.
- Lattice walk models are ubiquitous in combinatorics, owing to nice bijections with many other structures. They also arise in nonparametric statistics, and via random walk models.

Sample applications

- Our machinery has been applied to, among others: quantum walks; queuing systems; RNA secondary structure; sequence alignment; random tilings; special function theory; integrable systems in statistical mechanics.
- Lattice walk models are ubiquitous in combinatorics, owing to nice bijections with many other structures. They also arise in nonparametric statistics, and via random walk models.
- First basic example: estimate $a_{r s}$, which counts nearest-neighbor walks in \mathbb{Z}^{2}, going from $(0,0)$ to (r, s), with steps in $\{(1,0),(0,1),(1,1)\}$ (Delannoy walks).

Sample applications

- Our machinery has been applied to, among others: quantum walks; queuing systems; RNA secondary structure; sequence alignment; random tilings; special function theory; integrable systems in statistical mechanics.
- Lattice walk models are ubiquitous in combinatorics, owing to nice bijections with many other structures. They also arise in nonparametric statistics, and via random walk models.
- First basic example: estimate $a_{r s}$, which counts nearest-neighbor walks in \mathbb{Z}^{2}, going from $(0,0)$ to (r, s), with steps in $\{(1,0),(0,1),(1,1)\}$ (Delannoy walks).
- Second basic example: $F=1 / H=\sum_{r, s} a_{r s} x^{r} y^{s}$ where

$$
H(x, y)=x^{2} y^{2}-2 x y(x+y)+5\left(x^{2}+y^{2}\right)+14 x y-20(x+y)+19
$$

Basic steps

(1) Compute generating function transform of sequence of interest.
(3) Invert transform via Cauchy Integral Formula.
(3) Approximate by integral of residue in smaller dimension.
© Convert to Fourier-Laplace integral by trigonometric substitution.
© Compute asymptotics of Fourier-Laplace integral.

Basic steps

(1) Compute generating function transform of sequence of interest.
(2) Invert transform via Cauchy Integral Formula.
© Approximate by integral of residue in smaller dimension. (9) Convert to Fourier-Laplace integral by trigonometric substitution.
(0) Compute asymptotics of Fourier-Laplace integral.

Basic steps

(1) Compute generating function transform of sequence of interest.
(2) Invert transform via Cauchy Integral Formula.
(3) Approximate by integral of residue in smaller dimension.
© Convert to Fourier-Laplace integral by trigonometric substitution.
(0) Compute asymptotics of Fourier-Laplace integral.

Basic steps

(1) Compute generating function transform of sequence of interest.
(2) Invert transform via Cauchy Integral Formula.
(3) Approximate by integral of residue in smaller dimension.
(9) Convert to Fourier-Laplace integral by trigonometric substitution.
© Compute asymptotics of Fourier-Laplace integral.

Basic steps

(1) Compute generating function transform of sequence of interest.
(2) Invert transform via Cauchy Integral Formula.
(3) Approximate by integral of residue in smaller dimension.
(9) Convert to Fourier-Laplace integral by trigonometric substitution.
(5) Compute asymptotics of Fourier-Laplace integral.

Basic steps

(1) Compute generating function transform of sequence of interest.
(2) Invert transform via Cauchy Integral Formula.
(3) Approximate by integral of residue in smaller dimension.
(9) Convert to Fourier-Laplace integral by trigonometric substitution.
(5) Compute asymptotics of Fourier-Laplace integral.

Basic steps

(1) Compute generating function transform of sequence of interest.
(2) Invert transform via Cauchy Integral Formula.
(3) Approximate by integral of residue in smaller dimension.
(9) Convert to Fourier-Laplace integral by trigonometric substitution.
(5) Compute asymptotics of Fourier-Laplace integral.

- Do everything algorithmically and implement in open source software.
- In this talk concentrate on Steps 2-5 and especially 5.

Basic steps

(1) Compute generating function transform of sequence of interest.
(2) Invert transform via Cauchy Integral Formula.
(3) Approximate by integral of residue in smaller dimension.
(9) Convert to Fourier-Laplace integral by trigonometric substitution.
(5) Compute asymptotics of Fourier-Laplace integral.

- Do everything algorithmically and implement in open source software.
- In this talk concentrate on Steps 2-5 and especially 5.

Basic steps: $d=1$ example coming up

(1) Compute generating function transform of sequence of interest.
(2) Invert transform via Cauchy Integral Formula.
(3) Approximate by integral of residue in smaller dimension.
(4) Convert to Fourier-Laplace integral by trigonometric substitution.
(3) Compute asymptotics of F-L integral.

Example (Pole: derangements)

- Consider $F(z)=e^{-z} /(1-z)$, the GF for derangements. Integrating over a small circle around $z=0$ gives by Cauchy's integral theorem

$$
a_{r}=\frac{1}{2 \pi i} \int_{C} z^{-r-1} F(z) d z .
$$

- Push the circle past the pole $z=1$. By Cauchy's residue theorem,

- The integral is $O\left((1+\varepsilon)^{-r}\right)$, for any $\varepsilon>0$, while the residue equals
 in r

Example (Pole: derangements)

- Consider $F(z)=e^{-z} /(1-z)$, the GF for derangements. Integrating over a small circle around $z=0$ gives by Cauchy's integral theorem

$$
a_{r}=\frac{1}{2 \pi i} \int_{C} z^{-r-1} F(z) d z .
$$

- Push the circle past the pole $z=1$. By Cauchy's residue theorem,

$$
a_{r}=\frac{1}{2 \pi i} \int_{C_{1+\varepsilon}} z^{-r-1} F(z) d z-\operatorname{Res}\left(z^{-r-1} F(z) ; z=1\right) .
$$

- The integral is $O\left((1+\varepsilon)^{-r}\right)$, for any $\varepsilon>0$, while the residue equals
- Thus $\left[z^{r}\right] F(z) \sim e^{-1}$ as $r \rightarrow \infty$, and error decays superexponentially
in r

Example (Pole: derangements)

- Consider $F(z)=e^{-z} /(1-z)$, the GF for derangements. Integrating over a small circle around $z=0$ gives by Cauchy's integral theorem

$$
a_{r}=\frac{1}{2 \pi i} \int_{C} z^{-r-1} F(z) d z .
$$

- Push the circle past the pole $z=1$. By Cauchy's residue theorem,

$$
a_{r}=\frac{1}{2 \pi i} \int_{C_{1+\varepsilon}} z^{-r-1} F(z) d z-\operatorname{Res}\left(z^{-r-1} F(z) ; z=1\right) .
$$

- The integral is $O\left((1+\varepsilon)^{-r}\right)$, for any $\varepsilon>0$, while the residue equals $-e^{-1}$.

Example (Pole: derangements)

- Consider $F(z)=e^{-z} /(1-z)$, the GF for derangements. Integrating over a small circle around $z=0$ gives by Cauchy's integral theorem

$$
a_{r}=\frac{1}{2 \pi i} \int_{C} z^{-r-1} F(z) d z
$$

- Push the circle past the pole $z=1$. By Cauchy's residue theorem,

$$
a_{r}=\frac{1}{2 \pi i} \int_{C_{1+\varepsilon}} z^{-r-1} F(z) d z-\operatorname{Res}\left(z^{-r-1} F(z) ; z=1\right) .
$$

- The integral is $O\left((1+\varepsilon)^{-r}\right)$, for any $\varepsilon>0$, while the residue equals $-e^{-1}$.
- Thus $\left[z^{r}\right] F(z) \sim e^{-1}$ as $r \rightarrow \infty$, and error decays superexponentially in r.

Basic steps: $d=1$ example coming up

(1) Compute generating function transform of sequence of interest.
(2) Invert transform via Cauchy Integral Formula.
(3) Approximate by integral of residue in smaller dimension.
(9) Convert to Fourier-Laplace integral by trigonometric substitution.
(6) Compute asymptotics of F-L integral.

Example (Essential singularity: saddle point method)

- Here $F(z)=\exp (z)$. The Cauchy integral formula on a circle C_{R} of radius R gives $a_{n} \leq F(R) / R^{n}$.
- Consider the "height function" $\log F(R)-n \log R$ and try to minimize over R. In this example, $R=n$ is the minimum.
- The integral over C_{n} has most mass near $z=n$, so that

Example (Essential singularity: saddle point method)

- Here $F(z)=\exp (z)$. The Cauchy integral formula on a circle C_{R} of radius R gives $a_{n} \leq F(R) / R^{n}$.
- Consider the "height function" $\log F(R)-n \log R$ and try to minimize over R. In this example, $R=n$ is the minimum.
- The integral over C_{n} has most mass near $z=n$, so that

Example (Essential singularity: saddle point method)

- Here $F(z)=\exp (z)$. The Cauchy integral formula on a circle C_{R} of radius R gives $a_{n} \leq F(R) / R^{n}$.
- Consider the "height function" $\log F(R)-n \log R$ and try to minimize over R. In this example, $R=n$ is the minimum.
- The integral over C_{n} has most mass near $z=n$, so that

$$
\begin{aligned}
a_{n} & =\frac{F(n)}{2 \pi n^{n}} \int_{0}^{2 \pi} \exp (-i n \theta) \frac{F\left(n e^{i \theta}\right)}{F(n)} d \theta \\
& \approx \frac{e^{n}}{2 \pi n^{n}} \int_{-\varepsilon}^{\varepsilon} \exp \left(-i n \theta+\log F\left(n e^{i \theta}\right)-\log F(n)\right) d \theta .
\end{aligned}
$$

Example (Saddle point example continued)

- The Maclaurin expansion yields

$$
-i n \theta+\log F\left(n e^{i \theta}\right)-\log F(n)=-n \theta^{2} / 2+O\left(n \theta^{3}\right)
$$

- This gives, with $b_{n}=2 \pi n^{n} e^{-n} a_{n}$, Laplace's approximation:

- This recaptures Stirling's approximation, since $n!=1 / a_{n}$:

Example (Saddle point example continued)

- The Maclaurin expansion yields

$$
-i n \theta+\log F\left(n e^{i \theta}\right)-\log F(n)=-n \theta^{2} / 2+O\left(n \theta^{3}\right)
$$

- This gives, with $b_{n}=2 \pi n^{n} e^{-n} a_{n}$, Laplace's approximation:

$$
b_{n} \approx \int_{-\varepsilon}^{\varepsilon} \exp \left(-n \theta^{2} / 2\right) d \theta \approx \int_{-\infty}^{\infty} \exp \left(-n \theta^{2} / 2\right) d \theta=\sqrt{2 \pi / n}
$$

- This recaptures Stirling's approximation, since $n!=1 / a_{n}$:

Example (Saddle point example continued)

- The Maclaurin expansion yields

$$
-i n \theta+\log F\left(n e^{i \theta}\right)-\log F(n)=-n \theta^{2} / 2+O\left(n \theta^{3}\right)
$$

- This gives, with $b_{n}=2 \pi n^{n} e^{-n} a_{n}$, Laplace's approximation:

$$
b_{n} \approx \int_{-\varepsilon}^{\varepsilon} \exp \left(-n \theta^{2} / 2\right) d \theta \approx \int_{-\infty}^{\infty} \exp \left(-n \theta^{2} / 2\right) d \theta=\sqrt{2 \pi / n}
$$

- This recaptures Stirling's approximation, since $n!=1 / a_{n}$:

$$
n!\sim n^{n} e^{-n} \sqrt{2 \pi n}
$$

Multivariate asymptotics - some quotations

- (Bender 1974) "Practically nothing is known about asymptotics for recursions in two variables even when a GF is available. Techniques for obtaining asymptotics from bivariate GFs would be quite useful."
- (Odlyzko 1995) "A major difficulty in estimating the coefficients of
mvGFs is that the geometry of the problem is far more difficult.
...Even rational multivariate functions are not easy to deal with."
- (Flajolet/Sedgewick 2009) "Roughly, we regard here a bivariate GF as
a collection of univariate GFs...""
- Robin Pemantle and I aimed to improve the multivariate situation
(http://ACSVproject.org).

Multivariate asymptotics - some quotations

- (Bender 1974) "Practically nothing is known about asymptotics for recursions in two variables even when a GF is available. Techniques for obtaining asymptotics from bivariate GFs would be quite useful."
- (Odlyzko 1995) "A major difficulty in estimating the coefficients of mvGFs is that the geometry of the problem is far more difficult. ... Even rational multivariate functions are not easy to deal with."
- (Flajolet/Sedgewick 2009) "Roughly, we regard here a bivariate GF as a collection of univariate GFs
- Robin Pemantle and I aimed to improve the multivariate situation (http://ACSVproject.org)

Multivariate asymptotics - some quotations

- (Bender 1974) "Practically nothing is known about asymptotics for recursions in two variables even when a GF is available. Techniques for obtaining asymptotics from bivariate GFs would be quite useful."
- (Odlyzko 1995) "A major difficulty in estimating the coefficients of mvGFs is that the geometry of the problem is far more difficult. ... Even rational multivariate functions are not easy to deal with."
- (Flajolet/Sedgewick 2009) "Roughly, we regard here a bivariate GF as a collection of univariate GFs"
- Robin Pemantle and I aimed to improve the multivariate situation
(http://ACSVproject.org).

Multivariate asymptotics - some quotations

- (Bender 1974) "Practically nothing is known about asymptotics for recursions in two variables even when a GF is available. Techniques for obtaining asymptotics from bivariate GFs would be quite useful."
- (Odlyzko 1995) "A major difficulty in estimating the coefficients of mvGFs is that the geometry of the problem is far more difficult. ... Even rational multivariate functions are not easy to deal with."
- (Flajolet/Sedgewick 2009) "Roughly, we regard here a bivariate GF as a collection of univariate GFs"
- Robin Pemantle and I aimed to improve the multivariate situation (http://ACSVproject.org).

Standing assumptions

- We use boldface to denote a multi-index: $\mathbf{z}=\left(z_{1}, \ldots, z_{d}\right)$, $\mathbf{r}=\left(r_{1}, \ldots, r_{d}\right)$. Similarly $\mathbf{z}^{\mathbf{r}}=z_{1}^{r_{1}} \ldots z_{d}^{r_{d}}$.
- A (multivariate) sequence is a function $a: \mathbb{N}^{d} \rightarrow \mathbb{C}$ for some fixed d. Usually write $a_{\mathbf{r}}$ instead of $a(\mathbf{r})$.
- The generating function (GF) is the formal power series

- Assume $F(\mathbf{z})=G(\mathbf{z}) / H(\mathbf{z})$ where G, H are polynomials. The singular variety $\mathcal{V}:=\{\mathbf{z}: H(\mathbf{z})=0\}$ consists of poles.
- To avoid discussing complicated topology, assume all coefficients of F are nonnegative.

Standing assumptions

- We use boldface to denote a multi-index: $\mathbf{z}=\left(z_{1}, \ldots, z_{d}\right)$, $\mathbf{r}=\left(r_{1}, \ldots, r_{d}\right)$. Similarly $\mathbf{z}^{\mathbf{r}}=z_{1}^{r_{1}} \ldots z_{d}^{r_{d}}$.
- A (multivariate) sequence is a function $a: \mathbb{N}^{d} \rightarrow \mathbb{C}$ for some fixed d. Usually write $a_{\mathbf{r}}$ instead of $a(\mathbf{r})$.
- The generating function (GF) is the formal power series

- Assume $F(\mathbf{z})=G(\mathbf{z}) / H(\mathbf{z})$ where G, H are polynomials. The singular variety $\mathcal{V}:=\{\mathbf{z}: H(\mathbf{z})=0\}$ consists of poles.
- To avoid discussing complicated topology, assume all coefficients of F are nonnegative.

Standing assumptions

- We use boldface to denote a multi-index: $\mathbf{z}=\left(z_{1}, \ldots, z_{d}\right)$, $\mathbf{r}=\left(r_{1}, \ldots, r_{d}\right)$. Similarly $\mathbf{z}^{\mathbf{r}}=z_{1}^{r_{1}} \ldots z_{d}^{r_{d}}$.
- A (multivariate) sequence is a function $a: \mathbb{N}^{d} \rightarrow \mathbb{C}$ for some fixed d. Usually write $a_{\mathbf{r}}$ instead of $a(\mathbf{r})$.
- The generating function (GF) is the formal power series

$$
F(\mathbf{z})=\sum_{\mathbf{r} \in \mathbb{N}^{d}} a_{\mathbf{r}} \mathbf{z}^{\mathbf{r}}
$$

- Assume $F(\mathbf{z})=G(\mathbf{z}) / H(\mathbf{z})$ where G, H are polynomials. The singular variety $\mathcal{V}:=\{\mathbf{z}: H(\mathbf{z})=0\}$ consists of poles.
- To avoid discussing complicated topology, assume all coefficients of F are nonnegative.

Standing assumptions

- We use boldface to denote a multi-index: $\mathbf{z}=\left(z_{1}, \ldots, z_{d}\right)$, $\mathbf{r}=\left(r_{1}, \ldots, r_{d}\right)$. Similarly $\mathbf{z}^{\mathbf{r}}=z_{1}^{r_{1}} \ldots z_{d}^{r_{d}}$.
- A (multivariate) sequence is a function $a: \mathbb{N}^{d} \rightarrow \mathbb{C}$ for some fixed d. Usually write $a_{\mathbf{r}}$ instead of $a(\mathbf{r})$.
- The generating function (GF) is the formal power series

$$
F(\mathbf{z})=\sum_{\mathbf{r} \in \mathbb{N}^{d}} a_{\mathbf{r}} \mathbf{z}^{\mathbf{r}}
$$

- Assume $F(\mathbf{z})=G(\mathbf{z}) / H(\mathbf{z})$ where G, H are polynomials. The singular variety $\mathcal{V}:=\{\mathbf{z}: H(\mathbf{z})=0\}$ consists of poles. are nonnegative.

Standing assumptions

- We use boldface to denote a multi-index: $\mathbf{z}=\left(z_{1}, \ldots, z_{d}\right)$, $\mathbf{r}=\left(r_{1}, \ldots, r_{d}\right)$. Similarly $\mathbf{z}^{\mathbf{r}}=z_{1}^{r_{1}} \ldots z_{d}^{r_{d}}$.
- A (multivariate) sequence is a function $a: \mathbb{N}^{d} \rightarrow \mathbb{C}$ for some fixed d. Usually write $a_{\mathbf{r}}$ instead of $a(\mathbf{r})$.
- The generating function (GF) is the formal power series

$$
F(\mathbf{z})=\sum_{\mathbf{r} \in \mathbb{N}^{d}} a_{\mathbf{r}} \mathbf{z}^{\mathbf{r}}
$$

- Assume $F(\mathbf{z})=G(\mathbf{z}) / H(\mathbf{z})$ where G, H are polynomials. The singular variety $\mathcal{V}:=\{\mathbf{z}: H(\mathbf{z})=0\}$ consists of poles.
- To avoid discussing complicated topology, assume all coefficients of F are nonnegative.

Outline of ACSV project results (steps 3-5)

- Given a direction $\overline{\mathbf{r}}$, to compute asymptotics of $a_{\mathbf{r}}$ in that direction we first restrict to a variety $\operatorname{crit}(\overline{\mathbf{r}})$ of critical points.
- A subset contrib $(\overline{\mathbf{r}}) \subseteq \operatorname{crit}(\overline{\mathrm{r}})$ contributes to asymptotics.
- For $\mathbf{p} \in \operatorname{contrib}(\overline{\mathbf{r}})$, there is a full asymptotic series $\mathcal{A}(\mathbf{p})$ depending on the type of singularity at \mathbf{p}. Each term is computable from finitely many derivatives of G and H at p.
- This yields an asymptotic expansion

$\mathbf{p} \in \operatorname{contrib}(\overline{\mathbf{r}})$
that is uniform on compact subsets of directions, provided the geometry at \mathbf{p} does not change.

Outline of ACSV project results (steps 3-5)

- Given a direction $\overline{\mathbf{r}}$, to compute asymptotics of $a_{\mathbf{r}}$ in that direction we first restrict to a variety $\operatorname{crit}(\overline{\mathbf{r}})$ of critical points.
- A subset contrib $(\overline{\mathbf{r}}) \subseteq \operatorname{crit}(\overline{\mathbf{r}})$ contributes to asymptotics.
- For $\mathrm{p} \in \operatorname{contrib}(\overline{\mathrm{r}})$, there is a full asymptotic series $\mathcal{A}(\mathrm{p})$ depending on the type of singularity at \mathbf{p}. Each term is computable from finitely many derivatives of G and H at \mathbf{p}.
- This yields an asymptotic expansion

$\mathbf{p} \in \operatorname{contrib}(\overline{\mathbf{r}})$
that is uniform on compact subsets of directions, provided the geometry at \mathbf{n} does not change

Outline of ACSV project results (steps 3-5)

- Given a direction $\overline{\mathbf{r}}$, to compute asymptotics of $a_{\mathbf{r}}$ in that direction we first restrict to a variety $\operatorname{crit}(\overline{\mathbf{r}})$ of critical points.
- A subset contrib $(\overline{\mathbf{r}}) \subseteq \operatorname{crit}(\overline{\mathbf{r}})$ contributes to asymptotics.
- For $\mathbf{p} \in \operatorname{contrib}(\overline{\mathbf{r}})$, there is a full asymptotic series $\mathcal{A}(\mathbf{p})$ depending on the type of singularity at \mathbf{p}. Each term is computable from finitely many derivatives of G and H at \mathbf{p}.
- This yields an asymptotic expansion

$\mathbf{p} \in \operatorname{contrib}(\overline{\mathbf{r}})$
that is uniform on compact subsets of directions, provided the geometry at \mathbf{n} does not change.

Outline of ACSV project results (steps 3-5)

- Given a direction $\overline{\mathbf{r}}$, to compute asymptotics of $a_{\mathbf{r}}$ in that direction we first restrict to a variety $\operatorname{crit}(\overline{\mathbf{r}})$ of critical points.
- A subset contrib $(\overline{\mathbf{r}}) \subseteq \operatorname{crit}(\overline{\mathbf{r}})$ contributes to asymptotics.
- For $\mathbf{p} \in \operatorname{contrib}(\overline{\mathbf{r}})$, there is a full asymptotic series $\mathcal{A}(\mathbf{p})$ depending on the type of singularity at \mathbf{p}. Each term is computable from finitely many derivatives of G and H at \mathbf{p}.
- This yields an asymptotic expansion

$$
a_{\mathbf{r}} \sim \sum_{\mathbf{p} \in \operatorname{contrib}(\overline{\mathbf{r}})} \mathbf{p}^{-\mathbf{r}} \mathcal{A}(\mathbf{p})
$$

that is uniform on compact subsets of directions, provided the geometry at \mathbf{p} does not change.

Simplest geometries: generic shape of $\mathcal{A}(\mathbf{p})$

- (smooth point, or multiple point with $n \leq d$)

$$
\sum a_{k}|\mathbf{r}|^{-(d-n) / 2-k}
$$

- (smooth/multiple point $n<d$)

$$
a_{0}=G(\mathbf{p}) C(\mathbf{p})
$$

where C depends on the derivatives to order 2 of H;

- (multiple point, $n=d$)

where J is the Jacobian matrix $\left(\partial H_{i} / \partial z_{j}\right)$, other a_{k} are zero;
- (multiple point, $n \geq d$)

where P is a piecewise polynomial of degree $n-d_{\text {a }}$

Simplest geometries: generic shape of $\mathcal{A}(\mathbf{p})$

- (smooth point, or multiple point with $n \leq d$)

$$
\sum a_{k}|\mathbf{r}|^{-(d-n) / 2-k}
$$

- (smooth/multiple point $n<d$)

$$
a_{0}=G(\mathbf{p}) C(\mathbf{p})
$$

where C depends on the derivatives to order 2 of H;

- (multiple point, $n=d$)

where J is the Jacobian matrix $\left(\partial H_{i} / \partial z_{j}\right)$, other a_{k} are zero;
- (multiple point, $n \geq d$)

where P is a piecewise polynomial of degree $n-d$.

Simplest geometries: generic shape of $\mathcal{A}(\mathbf{p})$

- (smooth point, or multiple point with $n \leq d$)

$$
\sum a_{k}|\mathbf{r}|^{-(d-n) / 2-k}
$$

- (smooth/multiple point $n<d$)

$$
a_{0}=G(\mathbf{p}) C(\mathbf{p})
$$

where C depends on the derivatives to order 2 of H;

- (multiple point, $n=d$)

$$
a_{0}=G(\mathbf{p})(\operatorname{det} J(\mathbf{p}))^{-1}
$$

where J is the Jacobian matrix $\left(\partial H_{i} / \partial z_{j}\right)$, other a_{k} are zero;
where P is a piecewise polynomial of degree

Simplest geometries: generic shape of $\mathcal{A}(\mathbf{p})$

- (smooth point, or multiple point with $n \leq d$)

$$
\sum a_{k}|\mathbf{r}|^{-(d-n) / 2-k}
$$

- (smooth/multiple point $n<d$)

$$
a_{0}=G(\mathbf{p}) C(\mathbf{p})
$$

where C depends on the derivatives to order 2 of H;

- (multiple point, $n=d$)

$$
a_{0}=G(\mathbf{p})(\operatorname{det} J(\mathbf{p}))^{-1}
$$

where J is the Jacobian matrix $\left(\partial H_{i} / \partial z_{j}\right)$, other a_{k} are zero;

- (multiple point, $n \geq d$)

$$
G(\mathbf{p}) P\left(\frac{r_{1}}{p_{1}}, \ldots, \frac{r_{d}}{p_{d}}\right),
$$

where P is a piecewise polynomial of degree $n-d$.

$d=2$ examples: geometry

Sample problem solutions

(1) Estimate $a_{r s}$, which counts nearest-neighbor walks in \mathbb{Z}^{2}, going from $(0,0)$ to (r, s), with steps in $\{(1,0),(0,1),(1,1)\}$ (Delannoy walks).

- Uniformly for $r / s, s / r$ away from 0

$$
a_{r s} \sim\left[\frac{r}{\Delta-s}\right]^{r}\left[\frac{s}{\Delta-r}\right]^{s} \sqrt{\frac{r s}{2 \pi \Delta(r+s-\Delta)^{2}}}
$$

where $\Delta=\sqrt{r^{2}+s^{2}}$.
(2) $F=1 / H=\sum_{r, s} a_{r s} x^{r} y^{s}$ where

$$
H(x, y)=x^{2} y^{2}-2 x y(x+y)+5\left(x^{2}+y^{2}\right)+14 x y-20(x+y)+19
$$

- When $1 / 2<r / s<2$, in fact $a_{r s} \sim 1 / 6$ with exponentially small error.

Basic steps: $d=2$ example coming up

(1) Compute generating function transform of sequence of interest.
(2) Invert transform via Cauchy Integral Formula.
(3) Approximate by integral of residue in smaller dimension.
(9) Convert to Fourier-Laplace integral by trigonometric substitution.
(3) Compute asymptotics of F-L integral.

Step 3(a): localization

- Suppose that $\left(z_{*}, w_{*}\right)$ is a smooth strictly minimal pole with nonzero coordinates, and let $\rho=\left|z_{*}\right|, \sigma=\left|w_{*}\right|$. Let C_{a} denote the circle of radius a centred at 0 .
- By Cauchy, for small $\delta>0$,

- The inner integral is small away from z_{*}, so that for some small neighbourhood N of $\%_{*}$ in C_{P}.

- Note that this is because of strict minimality: off N, the function $F(z, \cdot)$ has radius of convergence greater than σ, and compactness allows us to do everything uniformly.

Step 3(a): localization

- Suppose that $\left(z_{*}, w_{*}\right)$ is a smooth strictly minimal pole with nonzero coordinates, and let $\rho=\left|z_{*}\right|, \sigma=\left|w_{*}\right|$. Let C_{a} denote the circle of radius a centred at 0 .
- By Cauchy, for small $\delta>0$,

$$
a_{r s}=(2 \pi i)^{-2} \int_{C_{\rho}} z^{-r} \int_{C_{\sigma-\delta}} w^{-s} F(z, w) \frac{d w}{w} \frac{d z}{z}
$$

- The inner integral is small away from z_{*}, so that for some small neighbourhood N of z_{*} in C_{ρ},

- Note that this is because of strict minimality: off N, the function $F(z, \cdot)$ has radius of convergence greater than σ, and compactness allows us to do everything uniformly.

Step 3(a): localization

- Suppose that $\left(z_{*}, w_{*}\right)$ is a smooth strictly minimal pole with nonzero coordinates, and let $\rho=\left|z_{*}\right|, \sigma=\left|w_{*}\right|$. Let C_{a} denote the circle of radius a centred at 0 .
- By Cauchy, for small $\delta>0$,

$$
a_{r s}=(2 \pi i)^{-2} \int_{C_{\rho}} z^{-r} \int_{C_{\sigma-\delta}} w^{-s} F(z, w) \frac{d w}{w} \frac{d z}{z}
$$

- The inner integral is small away from z_{*}, so that for some small neighbourhood N of z_{*} in C_{ρ},

$$
a_{r s} \approx I:=(2 \pi i)^{-2} \int_{N} z^{-r} \int_{C_{\sigma-\delta}} w^{-s} F(z, w) \frac{d w}{w} \frac{d z}{z}
$$

- Note that this is because of strict minimality: $F(z, \cdot)$ has radius of convergence greater than σ, and compactness allows us to do everything uniformly.

Step 3(a): localization

- Suppose that $\left(z_{*}, w_{*}\right)$ is a smooth strictly minimal pole with nonzero coordinates, and let $\rho=\left|z_{*}\right|, \sigma=\left|w_{*}\right|$. Let C_{a} denote the circle of radius a centred at 0 .
- By Cauchy, for small $\delta>0$,

$$
a_{r s}=(2 \pi i)^{-2} \int_{C_{\rho}} z^{-r} \int_{C_{\sigma-\delta}} w^{-s} F(z, w) \frac{d w}{w} \frac{d z}{z}
$$

- The inner integral is small away from z_{*}, so that for some small neighbourhood N of z_{*} in C_{ρ},

$$
a_{r s} \approx I:=(2 \pi i)^{-2} \int_{N} z^{-r} \int_{C_{\sigma-\delta}} w^{-s} F(z, w) \frac{d w}{w} \frac{d z}{z} .
$$

- Note that this is because of strict minimality: off N, the function $F(z, \cdot)$ has radius of convergence greater than σ, and compactness allows us to do everything uniformly.

Step 3(b): residue

- By smoothness, there is a local parametrization $w=g(z):=1 / v(z)$ near z_{*}.
- If δ is small enough, the function $w \mapsto F(z, w) / w$ has a unique pole in the annulus $\sigma-\delta \leq|w| \leq \sigma+\delta$. Let $\Psi(z)$ be the residue there.
- By Cauchy,

$$
I=I^{\prime}+(2 \pi i)^{-1} v(z)^{s} \Psi(z)
$$

where

- Clearly $\left|z_{*}^{r} I^{\prime}\right| \rightarrow 0$, and hence

Step 3(b): residue

- By smoothness, there is a local parametrization $w=g(z):=1 / v(z)$ near z_{*}.
- If δ is small enough, the function $w \mapsto F(z, w) / w$ has a unique pole in the annulus $\sigma-\delta \leq|w| \leq \sigma+\delta$. Let $\Psi(z)$ be the residue there.
where

- Clearly $\left|z_{*}^{r} I^{\prime}\right| \rightarrow 0$, and hence

Step 3(b): residue

- By smoothness, there is a local parametrization $w=g(z):=1 / v(z)$ near z_{*}.
- If δ is small enough, the function $w \mapsto F(z, w) / w$ has a unique pole in the annulus $\sigma-\delta \leq|w| \leq \sigma+\delta$. Let $\Psi(z)$ be the residue there.
- By Cauchy,

$$
I=I^{\prime}+(2 \pi i)^{-1} v(z)^{s} \Psi(z)
$$

where

$$
I^{\prime}:=(2 \pi i)^{-2} \int_{N} z^{-r} \int_{C_{\sigma+\delta}} w^{-s} F(z, w) \frac{d w}{w} \frac{d z}{z}
$$

- Clearly $\left|z_{*}^{r} I^{\prime}\right| \rightarrow 0$, and hence

Step 3(b): residue

- By smoothness, there is a local parametrization $w=g(z):=1 / v(z)$ near z_{*}.
- If δ is small enough, the function $w \mapsto F(z, w) / w$ has a unique pole in the annulus $\sigma-\delta \leq|w| \leq \sigma+\delta$. Let $\Psi(z)$ be the residue there.
- By Cauchy,

$$
I=I^{\prime}+(2 \pi i)^{-1} v(z)^{s} \Psi(z)
$$

where

$$
I^{\prime}:=(2 \pi i)^{-2} \int_{N} z^{-r} \int_{C_{\sigma+\delta}} w^{-s} F(z, w) \frac{d w}{w} \frac{d z}{z}
$$

- Clearly $\left|z_{*}^{r} I^{\prime}\right| \rightarrow 0$, and hence

$$
a_{r s} \approx(2 \pi i)^{-1} \int_{N} z^{-r} v(z)^{s} \Psi(z) d z
$$

Step 4: Fourier-Laplace integral

- We make the substitution

$$
\begin{aligned}
& f(\theta)=-\log \frac{v\left(z_{*} e^{i \theta}\right)}{v\left(z_{*}\right)}+i \frac{r \theta}{s} \\
& A(\theta)=\Psi\left(z_{*} \exp (i \theta)\right)
\end{aligned}
$$

- This yields

where D is a small neighbourhood of $0 \in \mathbb{R}$.

Step 4: Fourier-Laplace integral

- We make the substitution

$$
\begin{aligned}
& f(\theta)=-\log \frac{v\left(z_{*} e^{i \theta}\right)}{v\left(z_{*}\right)}+i \frac{r \theta}{s} \\
& A(\theta)=\Psi\left(z_{*} \exp (i \theta)\right)
\end{aligned}
$$

- This yields

$$
a_{r s} \sim \frac{1}{2 \pi} z_{*}^{-r} w_{*}^{-s} \int_{D} \exp (-s f(\theta)) A(\theta) d \theta
$$

where D is a small neighbourhood of $0 \in \mathbb{R}$.

Order of vanishing of f

- Let $\alpha:=r / s$, so that

$$
f^{\prime}(0)=-i\left(\frac{z_{*} v^{\prime}\left(z_{*}\right)}{v\left(z_{*}\right)}-\alpha\right) .
$$

If $z v^{\prime}\left(z_{*}\right) / v\left(z_{*}\right) \neq \alpha$, our "reduction" is of no use, owing to oscillation.

- If $z v^{\prime}\left(z_{*}\right) / v\left(z_{*}\right)=\alpha$ (critical point equation), we definitely get a result of order $\left|z_{*}\right|^{-r}\left|w_{*}\right|^{-s}$ as $r \rightarrow \infty$ with $r / s=\alpha$.
- Furthermore

and generically $f^{\prime \prime}(0) \neq 0$.

Order of vanishing of f

- Let $\alpha:=r / s$, so that

$$
f^{\prime}(0)=-i\left(\frac{z_{*} v^{\prime}\left(z_{*}\right)}{v\left(z_{*}\right)}-\alpha\right) .
$$

If $z v^{\prime}\left(z_{*}\right) / v\left(z_{*}\right) \neq \alpha$, our "reduction" is of no use, owing to oscillation.

- If $z v^{\prime}\left(z_{*}\right) / v\left(z_{*}\right)=\alpha$ (critical point equation), we definitely get a result of order $\left|z_{*}\right|^{-r}\left|w_{*}\right|^{-s}$ as $r \rightarrow \infty$ with $r / s=\alpha$.
- Furthermore

and generically $f^{\prime \prime}(0) \neq 0$.

Order of vanishing of f

- Let $\alpha:=r / s$, so that

$$
f^{\prime}(0)=-i\left(\frac{z_{*} v^{\prime}\left(z_{*}\right)}{v\left(z_{*}\right)}-\alpha\right)
$$

If $z v^{\prime}\left(z_{*}\right) / v\left(z_{*}\right) \neq \alpha$, our "reduction" is of no use, owing to oscillation.

- If $z v^{\prime}\left(z_{*}\right) / v\left(z_{*}\right)=\alpha$ (critical point equation), we definitely get a result of order $\left|z_{*}\right|^{-r}\left|w_{*}\right|^{-s}$ as $r \rightarrow \infty$ with $r / s=\alpha$.
- Furthermore

$$
f^{\prime \prime}(0)=\frac{z_{*}^{2} v^{\prime \prime}\left(z_{*}\right)}{v\left(z_{*}\right)}+\frac{z_{*} v^{\prime}\left(z_{*}\right)}{v\left(z_{*}\right)}-\left(\frac{z_{*} v^{\prime}\left(z_{*}\right)}{v\left(z_{*}\right)}\right)^{2}
$$

and generically $f^{\prime \prime}(0) \neq 0$.

Multiple point reduction

- Similar to above example, but get a sum of residues in the inner integral.
- The residues are not individually integrable so we need to keep the sum.
- The sun can be rewritten as an integral over a simplex.
- So we still get an integral of the same general form in the end, with a trickier domain.
- Other local geometries still lead via different routes to similar integrals.

Multiple point reduction

- Similar to above example, but get a sum of residues in the inner integral.
- The residues are not individually integrable so we need to keep the sum.
- The sum can be rewritten as an integral over a simplex.
- So we still get an integral of the same general form in the end, with a trickier domain.
- Other local geometries still lead via different routes to similar integrals.

Multiple point reduction

- Similar to above example, but get a sum of residues in the inner integral.
- The residues are not individually integrable so we need to keep the sum.
- The sum can be rewritten as an integral over a simplex.
- So we still get an integral of the same general form in the end, with a trickier domain.
- Other local geometries still lead via different routes to similar integrals.

Multiple point reduction

- Similar to above example, but get a sum of residues in the inner integral.
- The residues are not individually integrable so we need to keep the sum.
- The sum can be rewritten as an integral over a simplex.
- So we still get an integral of the same general form in the end, with a trickier domain.
- Other local geometries still lead via different routes to similar integrals.

Multiple point reduction

- Similar to above example, but get a sum of residues in the inner integral.
- The residues are not individually integrable so we need to keep the sum.
- The sum can be rewritten as an integral over a simplex.
- So we still get an integral of the same general form in the end, with a trickier domain.
- Other local geometries still lead via different routes to similar integrals.

Fourier-Laplace integrals

- We have reduced to asymptotic $(\lambda \gg 0)$ analysis of Fourier-Laplace integrals of the form

$$
I(\lambda)=\int_{D} e^{-\lambda f(\mathbf{t})} A(\mathbf{t}) d \mathbf{t}
$$

where:

- $0 \in D \subset \mathbb{R}^{d}, f(0)=f^{\prime}(0)=0$.
- $\operatorname{Re} f \geq 0$; the phase f and amplitude A are analytic.
- Such integrals occur commonly in mathematical physics (optics, waves, ...), statistics, etc.

Fourier-Laplace integrals

- We have reduced to asymptotic $(\lambda \gg 0)$ analysis of Fourier-Laplace integrals of the form

$$
I(\lambda)=\int_{D} e^{-\lambda f(\mathbf{t})} A(\mathbf{t}) d \mathbf{t}
$$

where:

- $\mathbf{0} \in D \subset \mathbb{R}^{d}, f(\mathbf{0})=f^{\prime}(\mathbf{0})=0$.
- $\operatorname{Re} f \geq 0$; the phase f and amplitude A are analytic.
- Such integrals occur commonly in mathematical physics (optics, waves, ...), statistics, etc.

Fourier-Laplace integrals

- We have reduced to asymptotic $(\lambda \gg 0)$ analysis of Fourier-Laplace integrals of the form

$$
I(\lambda)=\int_{D} e^{-\lambda f(\mathbf{t})} A(\mathbf{t}) d \mathbf{t}
$$

where:

- $\mathbf{0} \in D \subset \mathbb{R}^{d}, f(\mathbf{0})=f^{\prime}(\mathbf{0})=0$.
- $\operatorname{Re} f \geq 0$; the phase f and amplitude A are analytic.
- Such integrals occur commonly in mathematical physics (optics, waves, ...), statistics, etc.

Fourier-Laplace integrals

- We have reduced to asymptotic $(\lambda \gg 0)$ analysis of Fourier-Laplace integrals of the form

$$
I(\lambda)=\int_{D} e^{-\lambda f(\mathbf{t})} A(\mathbf{t}) d \mathbf{t}
$$

where:

- $\mathbf{0} \in D \subset \mathbb{R}^{d}, f(\mathbf{0})=f^{\prime}(\mathbf{0})=0$.
- $\operatorname{Re} f \geq 0$; the phase f and amplitude A are analytic.
- Such integrals occur commonly in mathematical physics (optics, waves, ...), statistics, etc.

Low-dimensional examples of Fourier-Laplace integrals

- Typical smooth point example looks like

$$
\int_{-1}^{1} e^{-\lambda(1+i) x^{2}} d x
$$

Isolated nondegenerate critical point, exponential decay.

- Simplest double point example looks roughly like

Note $f=1$ on $x=0$; tricky interplay of decay and oscillation.

- Multiple point with $n=2, d=1$ gives integral like

Simplex corners now intrude, continuum of critical points

Low-dimensional examples of Fourier-Laplace integrals

- Typical smooth point example looks like

$$
\int_{-1}^{1} e^{-\lambda(1+i) x^{2}} d x
$$

Isolated nondegenerate critical point, exponential decay.

- Simplest double point example looks roughly like

$$
\int_{-1}^{1} \int_{0}^{1} e^{-\lambda\left(x^{2}+2 i x y\right)} d y d x
$$

Note $f=1$ on $x=0$; tricky interplay of decay and oscillation.

- Multiple point with $n=2, d=1$ gives integral like

Simplex corners now intrude, continuum of critical points.

Low-dimensional examples of Fourier-Laplace integrals

- Typical smooth point example looks like

$$
\int_{-1}^{1} e^{-\lambda(1+i) x^{2}} d x
$$

Isolated nondegenerate critical point, exponential decay.

- Simplest double point example looks roughly like

$$
\int_{-1}^{1} \int_{0}^{1} e^{-\lambda\left(x^{2}+2 i x y\right)} d y d x
$$

Note $f=1$ on $x=0$; tricky interplay of decay and oscillation.

- Multiple point with $n=2, d=1$ gives integral like

$$
\int_{-1}^{1} \int_{0}^{1} \int_{-x}^{x} e^{-\lambda\left(z^{2}+2 i z y\right)} d y d x d z
$$

Simplex corners now intrude, continuum of critical points.

Difficulties with Fourier-Laplace integral asymptotics

- We consider for $\lambda \gg 0$, where $D \subset \mathbb{R}^{d}$

$$
I(\lambda)=\int_{D} \exp (-\lambda f(\mathbf{t})) A(\mathbf{t}) d \mathbf{t}
$$

- First suppose f has an isolated quadratically nondegenerate stationary point at $\mathbf{0}$.
- All authors assume at least one of the following:
- Many of our applications do not fit into this framework. We needed to extend what is known. We showed that the Laplace formula holds for stratified spaces if critical points are not on the boundary.

Difficulties with Fourier-Laplace integral asymptotics

- We consider for $\lambda \gg 0$, where $D \subset \mathbb{R}^{d}$

$$
I(\lambda)=\int_{D} \exp (-\lambda f(\mathbf{t})) A(\mathbf{t}) d \mathbf{t}
$$

- First suppose f has an isolated quadratically nondegenerate stationary point at $\mathbf{0}$.
- All authors assume at least one of the following:
- Many of our applications do not fit into this framework. We needed to extend what is known. We showed that the Laplace formula holds for stratified spaces if critical points are not on the boundary.

Difficulties with Fourier-Laplace integral asymptotics

- We consider for $\lambda \gg 0$, where $D \subset \mathbb{R}^{d}$

$$
I(\lambda)=\int_{D} \exp (-\lambda f(\mathbf{t})) A(\mathbf{t}) d \mathbf{t}
$$

- First suppose f has an isolated quadratically nondegenerate stationary point at $\mathbf{0}$.
- All authors assume at least one of the following:

```
- f is purely real, or purely imaginary;
- f}\mathrm{ decays exponentially away from 0;
- A vanishes on }\partialD\mathrm{ ;
- }\partialD\mathrm{ is smooth
```

- Many of our applications do not fit into this framework. We needed to extend what is known. We showed that the Laplace formula holds for stratified spaces if critical points are not on the boundary.

Difficulties with Fourier-Laplace integral asymptotics

- We consider for $\lambda \gg 0$, where $D \subset \mathbb{R}^{d}$

$$
I(\lambda)=\int_{D} \exp (-\lambda f(\mathbf{t})) A(\mathbf{t}) d \mathbf{t}
$$

- First suppose f has an isolated quadratically nondegenerate stationary point at $\mathbf{0}$.
- All authors assume at least one of the following:
- f is purely real, or purely imaginary;
- f decays exponentially away from 0;
- A vanishes on ∂D;
- ∂D is smooth.
- Many of our applications do not fit into this framework. We needed to extend what is known. We showed that the Laplace formula holds for stratified spaces if critical points are not on the boundary.

Difficulties with Fourier-Laplace integral asymptotics

- We consider for $\lambda \gg 0$, where $D \subset \mathbb{R}^{d}$

$$
I(\lambda)=\int_{D} \exp (-\lambda f(\mathbf{t})) A(\mathbf{t}) d \mathbf{t}
$$

- First suppose f has an isolated quadratically nondegenerate stationary point at $\mathbf{0}$.
- All authors assume at least one of the following:
- f is purely real, or purely imaginary;
- f decays exponentially away from 0;
- Many of our applications do not fit into this framework. We needed to extend what is known. We showed that the Laplace formula holds for stratified spaces if critical points are not on the boundary.

Difficulties with Fourier-Laplace integral asymptotics

- We consider for $\lambda \gg 0$, where $D \subset \mathbb{R}^{d}$

$$
I(\lambda)=\int_{D} \exp (-\lambda f(\mathbf{t})) A(\mathbf{t}) d \mathbf{t}
$$

- First suppose f has an isolated quadratically nondegenerate stationary point at $\mathbf{0}$.
- All authors assume at least one of the following:
- f is purely real, or purely imaginary;
- f decays exponentially away from $\mathbf{0}$;
- A vanishes on ∂D;
- Many of our applications do not fit into this framework. We needed to extend what is known. We showed that the Laplace formula holds for stratified spaces if critical points are not on the boundary.

Difficulties with Fourier-Laplace integral asymptotics

- We consider for $\lambda \gg 0$, where $D \subset \mathbb{R}^{d}$

$$
I(\lambda)=\int_{D} \exp (-\lambda f(\mathbf{t})) A(\mathbf{t}) d \mathbf{t}
$$

- First suppose f has an isolated quadratically nondegenerate stationary point at $\mathbf{0}$.
- All authors assume at least one of the following:
- f is purely real, or purely imaginary;
- f decays exponentially away from $\mathbf{0}$;
- A vanishes on ∂D;
- ∂D is smooth.
- Many of our applications do not fit into this framework. We needed to extend what is known. We showed that the Laplace formula holds for stratified spaces if critical points are not on the boundary.

Difficulties with Fourier-Laplace integral asymptotics

- We consider for $\lambda \gg 0$, where $D \subset \mathbb{R}^{d}$

$$
I(\lambda)=\int_{D} \exp (-\lambda f(\mathbf{t})) A(\mathbf{t}) d \mathbf{t}
$$

- First suppose f has an isolated quadratically nondegenerate stationary point at $\mathbf{0}$.
- All authors assume at least one of the following:
- f is purely real, or purely imaginary;
- f decays exponentially away from $\mathbf{0}$;
- A vanishes on ∂D;
- ∂D is smooth.
- Many of our applications do not fit into this framework. We needed to extend what is known. We showed that the Laplace formula holds for stratified spaces if critical points are not on the boundary.

Higher order terms

- These are necessary when any of the following occur:
- leading term cancels in deriving other formulae;
- leading term is zero because of numerator;
- we want accurate numerical approximations in the non-asymptotic regime.
- We can in principle differentiate implicitly and solve a system of equations for each term in the asymptotic expansion.
- Hörmander has a completely explicit formula that proved useful in the simplest cases. There may be other ways.

Higher order terms

- These are necessary when any of the following occur:
- leading term cancels in deriving other formulae;
- leading term is zero because of numerator;
- we want accurate numerical approximations in the non-asymptotic regime.
- We can in principle differentiate implicitly and solve a system of equations for each term in the asymptotic expansion.
- Hörmander has a completely explicit formula that proved useful in the simplest cases. There may be other ways.

Higher order terms

- These are necessary when any of the following occur:
- leading term cancels in deriving other formulae;
- leading term is zero because of numerator;
- we want accurate numerical approximations in the non-asymptotic regime.
- We can in principle differentiate implicitly and solve a system of equations for each term in the asymptotic expansion.
- Hörmander has a completely explicit formula that proved useful in the simplest cases. There may be other ways.

Higher order terms

- These are necessary when any of the following occur:
- leading term cancels in deriving other formulae;
- leading term is zero because of numerator;
- we want accurate numerical approximations in the non-asymptotic regime.
- We can in principle differentiate implicitly and solve a system of equations for each term in the asymptotic expansion.
- Hörmander has a completely explicit formula that proved useful in the simplest cases. There may be other ways.

Higher order terms

- These are necessary when any of the following occur:
- leading term cancels in deriving other formulae;
- leading term is zero because of numerator;
- we want accurate numerical approximations in the non-asymptotic regime.
- We can in principle differentiate implicitly and solve a system of equations for each term in the asymptotic expansion.
simplest cases. There may be other ways.

Higher order terms

- These are necessary when any of the following occur:
- leading term cancels in deriving other formulae;
- leading term is zero because of numerator;
- we want accurate numerical approximations in the non-asymptotic regime.
- We can in principle differentiate implicitly and solve a system of equations for each term in the asymptotic expansion.
- Hörmander has a completely explicit formula that proved useful in the simplest cases. There may be other ways.

Hörmander's explicit formula

The asymptotic contribution of an isolated nondegenerate stationary point is

$$
\left(\operatorname{det}\left(\frac{\lambda f^{\prime \prime}(\mathbf{0})}{2 \pi}\right)\right)^{-1 / 2} \sum_{k \geq 0} \lambda^{-k} L_{k}(A, f)
$$

where L_{k} is a differential operator of order $2 k$ evaluated at $\mathbf{0}$. Specifically,

$$
\begin{aligned}
\underline{f}(t) & =f(t)-(1 / 2) t f^{\prime \prime}(0) t^{T} \\
\mathcal{D} & =\sum_{a, b}\left(f^{\prime \prime}(\mathbf{0})^{-1}\right)_{a, b}\left(-\mathrm{i} \partial_{a}\right)\left(-\mathrm{i} \partial_{b}\right) \\
L_{k}(A, f) & =\sum_{l \leq 2 k} \frac{\mathcal{D}^{l+k}\left(A \underline{f}^{l}\right)(0)}{(-1)^{k} 2^{l+k} l!(l+k)!} .
\end{aligned}
$$

Example (Binomial coefficients)

The binomial coefficient $\binom{r+s}{s}$ has generating function $(1-x-y)^{-1}$, so the diagonal coefficients yield $\binom{2 r}{r}$.
The relative error in our approximation is:

n	1st	2nd	3rd	4th
1	-0.128	0.013	0.004	-0.002
2	-0.063	0.003	0.0006	-8×10^{-5}
4	-0.032	0.0005	7×10^{-5}	-4×10^{-6}
8	-0.016	0.0001	9×10^{-6}	-2×10^{-7}
16	-0.008	3×10^{-5}	1.2×10^{-6}	-1.1×10^{-8}
32	-0.004	8×10^{-6}	1.5×10^{-7}	-6.6×10^{-10}

There is plenty to be done

- Asymptotics for Fourier-Laplace integrals with degenerate singularities.
- Phase transitions as the direction varies.
- Probabilistic limit laws: beyond generic Gaussian case.
- Making everything algorithmic implementation in Sage
- Second edition of monograph with Pemantle scheduled for 2021.

There is plenty to be done

- Asymptotics for Fourier-Laplace integrals with degenerate singularities.
- Phase transitions as the direction varies.
- Probabilistic limit laws: beyond generic Gaussian case.
- Making everything algorithmic, implementation in Sage.
- Second edition of monograph with Pemantle scheduled for 2021.

There is plenty to be done

- Asymptotics for Fourier-Laplace integrals with degenerate singularities.
- Phase transitions as the direction varies.
- Probabilistic limit laws: beyond generic Gaussian case.
- Making everything algorithmic, implementation in Sage.
- Second edition of monograph with Pemantle scheduled for 2021.

There is plenty to be done

- Asymptotics for Fourier-Laplace integrals with degenerate singularities.
- Phase transitions as the direction varies.
- Probabilistic limit laws: beyond generic Gaussian case.
- Making everything algorithmic, implementation in Sage.
- Second edition of monograph with Pemantle scheduled for 2021.

There is plenty to be done

- Asymptotics for Fourier-Laplace integrals with degenerate singularities.
- Phase transitions as the direction varies.
- Probabilistic limit laws: beyond generic Gaussian case.
- Making everything algorithmic, implementation in Sage.
- Second edition of monograph with Pemantle scheduled for 2021.

Example (Gessel walks)

- Walks with steps in $\{E, N E, W, S W\}$ restricted to lie in the positive quadrant.
- A notoriously tough class to enumerate, done via huge amounts of computer algebra.
- We can express the number of such walks as the diagonal coefficients of a rational function in 2 variables.
- Geometry of the singular variety is more complicated, leading to more complicated geometry of phase.
- Phase looks locally like $u^{3}+v^{3}+u v^{2}+u^{2} v$ instead of $u^{2}+v^{2}$.

Example (Gessel walks)

- Walks with steps in $\{E, N E, W, S W\}$ restricted to lie in the positive quadrant.
- A notoriously tough class to enumerate, done via huge amounts of computer algebra.
- We can express the number of such walks as the diagonal coefficients of a rational function in 2 variables.
- Geometry of the singular variety is more complicated, leading to more complicated geometry of phase.

Example (Gessel walks)

- Walks with steps in $\{E, N E, W, S W\}$ restricted to lie in the positive quadrant.
- A notoriously tough class to enumerate, done via huge amounts of computer algebra.
- We can express the number of such walks as the diagonal coefficients of a rational function in 2 variables.
- Geometry of the singular variety is more complicated, leading to more complicated geometry of phase.

Example (Gessel walks)

- Walks with steps in $\{E, N E, W, S W\}$ restricted to lie in the positive quadrant.
- A notoriously tough class to enumerate, done via huge amounts of computer algebra.
- We can express the number of such walks as the diagonal coefficients of a rational function in 2 variables.
- Geometry of the singular variety is more complicated, leading to more complicated geometry of phase.

Example (Gessel walks)

- Walks with steps in $\{E, N E, W, S W\}$ restricted to lie in the positive quadrant.
- A notoriously tough class to enumerate, done via huge amounts of computer algebra.
- We can express the number of such walks as the diagonal coefficients of a rational function in 2 variables.
- Geometry of the singular variety is more complicated, leading to more complicated geometry of phase.
- Phase looks locally like $u^{3}+v^{3}+u v^{2}+u^{2} v$ instead of $u^{2}+v^{2}$.

Phase transitions and limit laws

Algorithmic implementation

- The expansions based on Hörmander's results are now included in the core implementation of Sage.
- The current implementation is quite slow, with obvious algorithmic inefficiencies.
- Higher order asymptotics are important but we only have an algorithm for the nondegenerate case.
- Interesting issue: we need to factor in the local analytic ring but we can only factor algorithmically in the algebraic local ring (?).

Algorithmic implementation

- The expansions based on Hörmander's results are now included in the core implementation of Sage.
- The current implementation is quite slow, with obvious algorithmic inefficiencies.
- Higher order asymptotics are important but we only have an algorithm for the nondegenerate case.
- Interesting issue: we need to factor in the local analytic ring but we can only factor algorithmically in the algebraic local ring (?)

Algorithmic implementation

- The expansions based on Hörmander's results are now included in the core implementation of Sage.
- The current implementation is quite slow, with obvious algorithmic inefficiencies.
- Higher order asymptotics are important but we only have an algorithm for the nondegenerate case.
- Interesting issue: we need to factor in the local analytic ring but we can only factor algorithmically in the algebraic local ring (?).

Algorithmic implementation

- The expansions based on Hörmander's results are now included in the core implementation of Sage.
- The current implementation is quite slow, with obvious algorithmic inefficiencies.
- Higher order asymptotics are important but we only have an algorithm for the nondegenerate case.
- Interesting issue: we need to factor in the local analytic ring but we can only factor algorithmically in the algebraic local ring (?).

Example (local factorization of lemniscate)

- Given $F=1 / H$ where

$$
H(x, y)=19-20 x-20 y+5 x^{2}+14 x y+5 y^{2}-2 x^{2} y-2 x y^{2}+x^{2} y^{2}
$$

- Here \mathcal{V} is smooth at every point except $(1,1)$, which we see by solving the system $\{H=0, \nabla H=0\}$
- At $(1,1)$, changing variables to $h(u, v):=H(1+u, 1+v)$, we see that $h(u, v)=4 u^{2}+10 u v+4 v^{2}+C(u, v)$ where C has no terms of degree less than 3.
- The quadratic part factors into distinct factors, showing that $(1,1)$ is a transverse multiple point.
- Note that our double point formula does not require details of the individual factors. However this is not the case for general multiple points.

Example (local factorization of lemniscate)

- Given $F=1 / H$ where

$$
H(x, y)=19-20 x-20 y+5 x^{2}+14 x y+5 y^{2}-2 x^{2} y-2 x y^{2}+x^{2} y^{2}
$$

- Here \mathcal{V} is smooth at every point except $(1,1)$, which we see by solving the system $\{H=0, \nabla H=0\}$.
- At $(1,1)$, changing variables to $h(u, v):=H(1+u, 1+v)$, we see that $h(u, v)=4 u^{2}+10 u v+4 v^{2}+C(u, v)$ where C has no terms of degree less than 3 .
- The quadratic part factors into distinct factors, showing that $(1,1)$ is a transverse multiple point.
- Note that our double point formula does not require details of the individual factors. However this is not the case for general multiple points.

Example (local factorization of lemniscate)

- Given $F=1 / H$ where

$$
H(x, y)=19-20 x-20 y+5 x^{2}+14 x y+5 y^{2}-2 x^{2} y-2 x y^{2}+x^{2} y^{2}
$$

- Here \mathcal{V} is smooth at every point except $(1,1)$, which we see by solving the system $\{H=0, \nabla H=0\}$.
- At $(1,1)$, changing variables to $h(u, v):=H(1+u, 1+v)$, we see that $h(u, v)=4 u^{2}+10 u v+4 v^{2}+C(u, v)$ where C has no terms of degree less than 3.
- The quadratic part factors into distinct factors, showing that $(1,1)$ is a transverse multiple point.
- Note that our double point formula does not require details of the individual factors. However this is not the case for general multiple points.

Example (local factorization of lemniscate)

- Given $F=1 / H$ where $H(x, y)=19-20 x-20 y+5 x^{2}+14 x y+5 y^{2}-2 x^{2} y-2 x y^{2}+x^{2} y^{2}$.
- Here \mathcal{V} is smooth at every point except $(1,1)$, which we see by solving the system $\{H=0, \nabla H=0\}$.
- At $(1,1)$, changing variables to $h(u, v):=H(1+u, 1+v)$, we see that $h(u, v)=4 u^{2}+10 u v+4 v^{2}+C(u, v)$ where C has no terms of degree less than 3.
- The quadratic part factors into distinct factors, showing that $(1,1)$ is a transverse multiple point.
- Note that our double point formula does not require details of the individual factors. However this is not the case for general multiple

Example (local factorization of lemniscate)

- Given $F=1 / H$ where $H(x, y)=19-20 x-20 y+5 x^{2}+14 x y+5 y^{2}-2 x^{2} y-2 x y^{2}+x^{2} y^{2}$.
- Here \mathcal{V} is smooth at every point except $(1,1)$, which we see by solving the system $\{H=0, \nabla H=0\}$.
- At $(1,1)$, changing variables to $h(u, v):=H(1+u, 1+v)$, we see that $h(u, v)=4 u^{2}+10 u v+4 v^{2}+C(u, v)$ where C has no terms of degree less than 3.
- The quadratic part factors into distinct factors, showing that $(1,1)$ is a transverse multiple point.
- Note that our double point formula does not require details of the individual factors. However this is not the case for general multiple points.

Generic smooth point asymptotics in dimension 2

Theorem
Suppose that $F=G / H$ has a strictly minimal simple pole at $\mathbf{p}=\left(z^{*}, w^{*}\right)$. If $Q(\mathbf{p}) \neq 0$, then when $s \rightarrow \infty$ with $\left(r w H_{w}-s z H_{z}\right)_{\mid \mathbf{p}}=0$,

$$
a_{r s}=\left(z^{*}\right)^{-r}\left(w^{*}\right)^{-s}\left[\frac{G(\mathbf{p})}{\sqrt{2 \pi}} \sqrt{\frac{-w H_{w}(\mathbf{p})}{s Q(\mathbf{p})}}+O\left(s^{-3 / 2}\right)\right] .
$$

The apparent lack of symmetry is illusory, since $w H_{w} / s=z H_{z} / r$ at \mathbf{p}.

- This, the simplest multivariate case, already covers hugely many applications.

Generic smooth point asymptotics in dimension 2

Theorem
Suppose that $F=G / H$ has a strictly minimal simple pole at $\mathbf{p}=\left(z^{*}, w^{*}\right)$. If $Q(\mathbf{p}) \neq 0$, then when $s \rightarrow \infty$ with $\left(r w H_{w}-s z H_{z}\right)_{\mid \mathbf{p}}=0$,

$$
a_{r s}=\left(z^{*}\right)^{-r}\left(w^{*}\right)^{-s}\left[\frac{G(\mathbf{p})}{\sqrt{2 \pi}} \sqrt{\frac{-w H_{w}(\mathbf{p})}{s Q(\mathbf{p})}}+O\left(s^{-3 / 2}\right)\right] .
$$

The apparent lack of symmetry is illusory, since $w H_{w} / s=z H_{z} / r$ at \mathbf{p}.

- This, the simplest multivariate case, already covers hugely many applications.
- Here \mathbf{p} is given, which specifies the only direction in which we can say anything useful. But we can vary \mathbf{p} and obtain asymptotics that are uniform in the direction.

Generic double point in dimension 2

Theorem
Suppose that $F=G / H$ has a strictly minimal pole at $\mathbf{p}=\left(z_{*}, w_{*}\right)$, which is a double point of \mathcal{V} such that $G(\mathbf{p}) \neq 0$. Then as $s \rightarrow \infty$ for r / s in $\mathrm{K}(\mathbf{p})$,

$$
a_{r s} \sim\left(z_{*}\right)^{-r}\left(w_{*}\right)^{-s}\left[\frac{G(\mathbf{p})}{\sqrt{\left(z_{*} w_{*}\right)^{2} \mathbf{Q}(\mathbf{p})}}+O\left(e^{-c(r+s)}\right)\right]
$$

where Q is the Hessian of H.

- Note that
- the expansion holds uniformly over compact subcones of K;
- the hypothesis $G(\mathbf{p}) \neq 0$ is necessary; when $d>1$, can have
$G(\mathbf{p})=H(\mathbf{p})=0$ even if G, H are relatively prime

Generic double point in dimension 2

Theorem
Suppose that $F=G / H$ has a strictly minimal pole at $\mathbf{p}=\left(z_{*}, w_{*}\right)$, which is a double point of \mathcal{V} such that $G(\mathbf{p}) \neq 0$. Then as $s \rightarrow \infty$ for r / s in $\mathrm{K}(\mathbf{p})$,

$$
a_{r s} \sim\left(z_{*}\right)^{-r}\left(w_{*}\right)^{-s}\left[\frac{G(\mathbf{p})}{\sqrt{\left(z_{*} w_{*}\right)^{2} \mathbf{Q}(\mathbf{p})}}+O\left(e^{-c(r+s)}\right)\right]
$$

where Q is the Hessian of H.

- Note that
- the expansion holds uniformly over compact subcones of K ;

$$
G(\mathbf{p})=H(\mathbf{p})=0 \text { even if } G, H \text { are relatively prime. }
$$

Generic double point in dimension 2

Theorem

Suppose that $F=G / H$ has a strictly minimal pole at $\mathbf{p}=\left(z_{*}, w_{*}\right)$, which is a double point of \mathcal{V} such that $G(\mathbf{p}) \neq 0$. Then as $s \rightarrow \infty$ for r / s in $\mathrm{K}(\mathbf{p})$,

$$
a_{r s} \sim\left(z_{*}\right)^{-r}\left(w_{*}\right)^{-s}\left[\frac{G(\mathbf{p})}{\sqrt{\left(z_{*} w_{*}\right)^{2} \mathbf{Q}(\mathbf{p})}}+O\left(e^{-c(r+s)}\right)\right]
$$

where Q is the Hessian of H.

- Note that
- the expansion holds uniformly over compact subcones of K ;
- the hypothesis $G(\mathbf{p}) \neq 0$ is necessary; when $d>1$, can have $G(\mathbf{p})=H(\mathbf{p})=0$ even if G, H are relatively prime.

