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Background Speaker

Today’s talk

3Asymptotics of multivariate generating functions and applications to
combinatorics and probability

Network science and applications in social science

Social choice theory, voting and electoral systems

Relations with computer science: algorithms, data science

See http://ACSVproject.org for more on this project, or talk to
me about any project.
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Background Analytic combinatorics

Sample applications

Our machinery has been applied to, among others: quantum walks;
queuing systems; RNA secondary structure; sequence alignment;
random tilings; special function theory; integrable systems in
statistical mechanics.

Lattice walk models are ubiquitous in combinatorics, owing to nice
bijections with many other structures. They also arise in
nonparametric statistics, and via random walk models.

First basic example: estimate ars, which counts nearest-neighbor
walks in Z2, going from (0, 0) to (r, s), with steps in
{(1, 0), (0, 1), (1, 1)} (Delannoy walks).

Second basic example: F = 1/H =
∑

r,s arsx
rys where

H(x, y) = x2y2 − 2xy(x+ y) + 5 (x2 + y2) + 14xy − 20(x+ y) + 19.
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Background Analytic combinatorics

Basic steps

1 Compute generating function transform of sequence of interest.

2 Invert transform via Cauchy Integral Formula.

3 Approximate by integral of residue in smaller dimension.

4 Convert to Fourier-Laplace integral by trigonometric substitution.

5 Compute asymptotics of Fourier-Laplace integral.

Do everything algorithmically and implement in open source software.

In this talk concentrate on Steps 2–5 and especially 5.
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Background Analytic combinatorics

Basic steps: d = 1 example coming up

1 Compute generating function transform of sequence of interest.

2 Invert transform via Cauchy Integral Formula.

3 Approximate by integral of residue in smaller dimension.

4 Convert to Fourier-Laplace integral by trigonometric substitution.

5 Compute asymptotics of F-L integral.
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Background Analytic combinatorics

Example (Pole: derangements)

Consider F (z) = e−z/(1− z), the GF for derangements. Integrating
over a small circle around z = 0 gives by Cauchy’s integral theorem

ar =
1

2πi

∫
C
z−r−1F (z) dz.

Push the circle past the pole z = 1. By Cauchy’s residue theorem,

ar =
1

2πi

∫
C1+ε

z−r−1F (z) dz − Res(z−r−1F (z); z = 1).

The integral is O((1 + ε)−r), for any ε > 0, while the residue equals
−e−1.

Thus [zr]F (z) ∼ e−1 as r →∞, and error decays superexponentially
in r.
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Background Analytic combinatorics

Example (Essential singularity: saddle point method)

Here F (z) = exp(z). The Cauchy integral formula on a circle CR of
radius R gives an ≤ F (R)/Rn.

Consider the “height function” logF (R)− n logR and try to
minimize over R. In this example, R = n is the minimum.

The integral over Cn has most mass near z = n, so that

an =
F (n)

2πnn

∫ 2π

0
exp(−inθ)F (neiθ)

F (n)
dθ

≈ en

2πnn

∫ ε

−ε
exp

(
−inθ + logF (neiθ)− logF (n)

)
dθ.
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Background Analytic combinatorics

Example (Saddle point example continued)

The Maclaurin expansion yields

−inθ + logF (neiθ)− logF (n) = −nθ2/2 +O(nθ3).

This gives, with bn = 2πnne−nan, Laplace’s approximation:

bn ≈
∫ ε

−ε
exp(−nθ2/2) dθ ≈

∫ ∞
−∞

exp(−nθ2/2) dθ =
√

2π/n.

This recaptures Stirling’s approximation, since n! = 1/an:

n! ∼ nne−n
√

2πn.
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Background ACSV project

Multivariate asymptotics — some quotations

(Bender 1974) “Practically nothing is known about asymptotics for
recursions in two variables even when a GF is available. Techniques
for obtaining asymptotics from bivariate GFs would be quite useful.”

(Odlyzko 1995) “A major difficulty in estimating the coefficients of
mvGFs is that the geometry of the problem is far more difficult.
. . . Even rational multivariate functions are not easy to deal with.”

(Flajolet/Sedgewick 2009) “Roughly, we regard here a bivariate GF as
a collection of univariate GFs . . . .”

Robin Pemantle and I aimed to improve the multivariate situation
(http://ACSVproject.org).
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Background ACSV project

Standing assumptions

We use boldface to denote a multi-index: z = (z1, . . . , zd),
r = (r1, . . . , rd). Similarly zr = zr11 . . . zrdd .

A (multivariate) sequence is a function a : Nd → C for some fixed d.
Usually write ar instead of a(r).

The generating function (GF) is the formal power series

F (z) =
∑
r∈Nd

arz
r.

Assume F (z) = G(z)/H(z) where G,H are polynomials. The
singular variety V := {z : H(z) = 0} consists of poles.

To avoid discussing complicated topology, assume all coefficients of F
are nonnegative.
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Background ACSV project

Outline of ACSV project results (steps 3–5)

Given a direction r, to compute asymptotics of ar in that direction we
first restrict to a variety crit(r) of critical points.

A subset contrib(r) ⊆ crit(r) contributes to asymptotics.

For p ∈ contrib(r), there is a full asymptotic series A(p) depending
on the type of singularity at p. Each term is computable from finitely
many derivatives of G and H at p.

This yields an asymptotic expansion

ar ∼
∑

p∈contrib(r)

p−rA(p)

that is uniform on compact subsets of directions, provided the
geometry at p does not change.
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Background ACSV project

Simplest geometries: generic shape of A(p)

(smooth point, or multiple point with n ≤ d)∑
ak|r|−(d−n)/2−k

(smooth/multiple point n < d)

a0 = G(p)C(p)

where C depends on the derivatives to order 2 of H;

(multiple point, n = d)

a0 = G(p)(det J(p))−1

where J is the Jacobian matrix (∂Hi/∂zj), other ak are zero;

(multiple point, n ≥ d)

G(p)P

(
r1
p1
, . . . ,

rd
pd

)
,

where P is a piecewise polynomial of degree n− d.
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Background ACSV project

d = 2 examples: geometry
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Background ACSV project

Sample problem solutions

1 Estimate ars, which counts nearest-neighbor walks in Z2, going from
(0, 0) to (r, s), with steps in {(1, 0), (0, 1), (1, 1)} (Delannoy walks).

Uniformly for r/s, s/r away from 0

ars ∼
[

r

∆− s

]r [
s

∆− r

]s√
rs

2π∆(r + s−∆)2

where ∆ =
√
r2 + s2.

2 F = 1/H =
∑

r,s arsx
rys where

H(x, y) = x2y2 − 2xy(x+ y) + 5 (x2 + y2) + 14xy − 20(x+ y) + 19.

When 1/2 < r/s < 2, in fact ars ∼ 1/6 with exponentially small error.
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Reduction to Fourier-Laplace integral

Basic steps: d = 2 example coming up

1 Compute generating function transform of sequence of interest.

2 Invert transform via Cauchy Integral Formula.

3 Approximate by integral of residue in smaller dimension.

4 Convert to Fourier-Laplace integral by trigonometric substitution.

5 Compute asymptotics of F-L integral.
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Reduction to Fourier-Laplace integral

Step 3(a): localization

Suppose that (z∗, w∗) is a smooth strictly minimal pole with nonzero
coordinates, and let ρ = |z∗|, σ = |w∗|. Let Ca denote the circle of
radius a centred at 0.

By Cauchy, for small δ > 0,

ars = (2πi)−2
∫
Cρ

z−r
∫
Cσ−δ

w−sF (z, w)
dw

w

dz

z
.

The inner integral is small away from z∗, so that for some small
neighbourhood N of z∗ in Cρ,

ars ≈ I := (2πi)−2
∫
N
z−r

∫
Cσ−δ

w−sF (z, w)
dw

w

dz

z
.

Note that this is because of strict minimality: off N , the function
F (z, ·) has radius of convergence greater than σ, and compactness
allows us to do everything uniformly.
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Reduction to Fourier-Laplace integral

Step 3(b): residue

By smoothness, there is a local parametrization w = g(z) := 1/v(z)
near z∗.

If δ is small enough, the function w 7→ F (z, w)/w has a unique pole
in the annulus σ − δ ≤ |w| ≤ σ + δ. Let Ψ(z) be the residue there.

By Cauchy,
I = I ′ + (2πi)−1v(z)sΨ(z),

where

I ′ := (2πi)−2
∫
N
z−r

∫
Cσ+δ

w−sF (z, w)
dw

w

dz

z
.

Clearly |zr∗I ′| → 0, and hence

ars ≈ (2πi)−1
∫
N
z−rv(z)sΨ(z) dz.
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Reduction to Fourier-Laplace integral

Step 4: Fourier-Laplace integral

We make the substitution

f(θ) = − log
v(z∗e

iθ)

v(z∗)
+ i

rθ

s

A(θ) = Ψ(z∗ exp(iθ)).

This yields

ars ∼
1

2π
z−r∗ w−s∗

∫
D

exp(−sf(θ))A(θ) dθ

where D is a small neighbourhood of 0 ∈ R.
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Reduction to Fourier-Laplace integral

Order of vanishing of f

Let α := r/s, so that

f ′(0) = −i
(
z∗v
′(z∗)

v(z∗)
− α

)
.

If zv′(z∗)/v(z∗) 6= α, our “reduction” is of no use, owing to
oscillation.

If zv′(z∗)/v(z∗) = α (critical point equation), we definitely get a
result of order |z∗|−r|w∗|−s as r →∞ with r/s = α.

Furthermore

f ′′(0) =
z2∗v
′′(z∗)

v(z∗)
+
z∗v
′(z∗)

v(z∗)
−
(
z∗v
′(z∗)

v(z∗)

)2

and generically f ′′(0) 6= 0.
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Reduction to Fourier-Laplace integral

Multiple point reduction

Similar to above example, but get a sum of residues in the inner
integral.

The residues are not individually integrable so we need to keep the
sum.

The sum can be rewritten as an integral over a simplex.

So we still get an integral of the same general form in the end, with a
trickier domain.

Other local geometries still lead via different routes to similar
integrals.
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Fourier-Laplace integrals

Fourier-Laplace integrals

We have reduced to asymptotic (λ >> 0) analysis of Fourier-Laplace
integrals of the form

I(λ) =

∫
D
e−λf(t)A(t) dt

where:

0 ∈ D ⊂ Rd, f(0) = f ′(0) = 0.
Re f ≥ 0; the phase f and amplitude A are analytic.

Such integrals occur commonly in mathematical physics (optics,
waves, . . . ), statistics, etc.
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Fourier-Laplace integrals

Low-dimensional examples of Fourier-Laplace integrals

Typical smooth point example looks like∫ 1

−1
e−λ(1+i)x

2
dx.

Isolated nondegenerate critical point, exponential decay.

Simplest double point example looks roughly like∫ 1

−1

∫ 1

0
e−λ(x

2+2ixy) dy dx.

Note f = 1 on x = 0; tricky interplay of decay and oscillation.

Multiple point with n = 2, d = 1 gives integral like∫ 1

−1

∫ 1

0

∫ x

−x
e−λ(z

2+2izy) dy dx dz.

Simplex corners now intrude, continuum of critical points.
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Fourier-Laplace integrals Asymptotics of Fourier-Laplace integrals

Difficulties with Fourier-Laplace integral asymptotics

We consider for λ >> 0, where D ⊂ Rd

I(λ) =

∫
D

exp(−λf(t))A(t) dt.

First suppose f has an isolated quadratically nondegenerate
stationary point at 0.

All authors assume at least one of the following:

f is purely real, or purely imaginary;
f decays exponentially away from 0;
A vanishes on ∂D;
∂D is smooth.

Many of our applications do not fit into this framework. We needed
to extend what is known. We showed that the Laplace formula holds
for stratified spaces if critical points are not on the boundary.
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Fourier-Laplace integrals Computation

Higher order terms

These are necessary when any of the following occur:

leading term cancels in deriving other formulae;
leading term is zero because of numerator;
we want accurate numerical approximations in the non-asymptotic
regime.

We can in principle differentiate implicitly and solve a system of
equations for each term in the asymptotic expansion.

Hörmander has a completely explicit formula that proved useful in the
simplest cases. There may be other ways.
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Fourier-Laplace integrals Computation

Hörmander’s explicit formula

The asymptotic contribution of an isolated nondegenerate stationary point
is (

det

(
λf ′′(0)

2π

))−1/2∑
k≥0

λ−kLk(A, f)

where Lk is a differential operator of order 2k evaluated at 0. Specifically,

f(t) = f(t)− (1/2)tf ′′(0)tT

D =
∑
a,b

(f ′′(0)−1)a,b(−i∂a)(−i∂b)

Lk(A, f) =
∑
l≤2k

Dl+k(Af l)(0)

(−1)k2l+kl!(l + k)!
.
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Fourier-Laplace integrals Computation

Example (Binomial coefficients)

The binomial coefficient
(
r+s
s

)
has generating function (1− x− y)−1, so

the diagonal coefficients yield
(
2r
r

)
.

The relative error in our approximation is:
n 1st 2nd 3rd 4th

1 -0.128 0.013 0.004 -0.002
2 -0.063 0.003 0.0006 −8× 10−5

4 -0.032 0.0005 7× 10−5 −4× 10−6

8 -0.016 0.0001 9× 10−6 −2× 10−7

16 -0.008 3× 10−5 1.2× 10−6 −1.1× 10−8

32 -0.004 8× 10−6 1.5× 10−7 −6.6× 10−10
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Future work

There is plenty to be done

Asymptotics for Fourier-Laplace integrals with degenerate
singularities.

Phase transitions as the direction varies.

Probabilistic limit laws: beyond generic Gaussian case.

Making everything algorithmic, implementation in Sage.

Second edition of monograph with Pemantle scheduled for 2021.
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Future work

Example (Gessel walks)

Walks with steps in {E,NE,W,SW} restricted to lie in the positive
quadrant.

A notoriously tough class to enumerate, done via huge amounts of
computer algebra.

We can express the number of such walks as the diagonal coefficients
of a rational function in 2 variables.

Geometry of the singular variety is more complicated, leading to more
complicated geometry of phase.

Phase looks locally like u3 + v3 + uv2 + u2v instead of u2 + v2.
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Future work

Phase transitions and limit laws
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Future work

Algorithmic implementation

The expansions based on Hörmander’s results are now included in the
core implementation of Sage.

The current implementation is quite slow, with obvious algorithmic
inefficiencies.

Higher order asymptotics are important but we only have an
algorithm for the nondegenerate case.

Interesting issue: we need to factor in the local analytic ring but we
can only factor algorithmically in the algebraic local ring (?).
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Future work

Example (local factorization of lemniscate)

Given F = 1/H where
H(x, y) = 19− 20x− 20y+ 5x2 + 14xy+ 5y2 − 2x2y− 2xy2 + x2y2.

Here V is smooth at every point except (1, 1), which we see by
solving the system {H = 0,∇H = 0}.
At (1, 1), changing variables to h(u, v) := H(1 + u, 1 + v), we see
that h(u, v) = 4u2 + 10uv + 4v2 + C(u, v) where C has no terms of
degree less than 3.

The quadratic part factors into distinct factors, showing that (1, 1) is
a transverse multiple point.

Note that our double point formula does not require details of the
individual factors. However this is not the case for general multiple
points.
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Extra slides

Generic smooth point asymptotics in dimension 2

Theorem

Suppose that F = G/H has a strictly minimal simple pole at p = (z∗, w∗).
If Q(p) 6= 0, then when s→∞ with (rwHw − szHz)|p = 0 ,

ars = (z∗)−r(w∗)−s

[
G(p)√

2π

√
−wHw(p)

sQ(p)
+O(s−3/2)

]
.

The apparent lack of symmetry is illusory, since wHw/s = zHz/r at p.

This, the simplest multivariate case, already covers hugely many
applications.

Here p is given, which specifies the only direction in which we can say
anything useful. But we can vary p and obtain asymptotics that are
uniform in the direction.
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Extra slides

Generic double point in dimension 2

Theorem

Suppose that F = G/H has a strictly minimal pole at p = (z∗, w∗), which
is a double point of V such that G(p) 6= 0. Then as s→∞ for r/s in
K(p),

ars ∼ (z∗)
−r(w∗)

−s

[
G(p)√

(z∗w∗)2 Q(p)
+O(e−c(r+s))

]

where Q is the Hessian of H.

Note that

the expansion holds uniformly over compact subcones of K;
the hypothesis G(p) 6= 0 is necessary; when d > 1, can have
G(p) = H(p) = 0 even if G,H are relatively prime.
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