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The genesis of this paper

The second half was done by Manuel Lladser (Boulder) and
Mark Wilson (Auckland) with major input from Robin
Pemantle (Philadelphia) . . .

who heard from Herb Wilf (Philadelphia) . . .

who was asked by Marko Petkovšek (Ljubljana) . . .

who was asked by Primož Potočnik (Ljubljana) and Jana
Šiagiová (Bratislava) . . .

who had completed the first half while visiting Jozef Širáň
(Auckland). (!)
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Background and motivation

Random graphs and digraphs have diameter 2 with high
probability as long as they are not too sparse.

We wish to sharpen this for various families of graphs. In
particular, we investigate the diameter of random Cayley
digraphs.

Cayley graphs are often used as models for communications
networks. The diameter is the number of rounds needed to
send a message across the graph.

Cayley graphs are also useful for studying groups: the
diameter is the maximum length of words in the generators
required to generate G as a semigroup.

Many combinatorial generation algorithms amount to finding
Hamilton cycles in Cayley graphs.
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Definitions

Let G be a finite group and S a set of non-identity elements
of G. The Cayley digraph Γ = Cay(G, S) has vertex set G
and arcs of the form (g, gs) where g ∈ G, s ∈ S.

The distance ∂(v, w) between v and w in G is the minimal
number of arcs in a path from v to w.

The diameter diam(Γ) is the minimal d such that all distances
between pairs of elements of Γ are at most d.

By vertex-transitivity of Γ, diam(Γ) = maxv ∂(1, v).
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The main question

How does diam Cay(G, S) behave asymptotically as n →∞?
What relationship between k := |S| and n := |G| must hold in
order that the diameter is equal to 2 with high probability?

(Lower bound) The Moore bound shows that if 1 + k2 < n,
then diam Cay(G, S) > 2.

(Upper bound) If k ≥ n/2 then diam Cay(G, S) = 2.

What about the region between
√

n and n/2?
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The probability model

For each k with 1 ≤ k < n, define P(G, k) to consist of all
possible generating sets (as above) that have size k. Give P
the uniform measure.

Let Diamn,k be the random variable on P equal to
diam Cay(G, S).
We seek the asymptotics of Pr(Diamn,k > 2) as n →∞ and
k varies with n, say k = f(n).
As far as we know even the linear case
f(n) = cn, 0 < c < 1/2 is unexplored. Other interesting
special cases: k = bnαc for 1/2 < α < 1.
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Overview of results of this section

For 2t ≤ n, k ≤ n define

p(n, k, t) =
(

n

k

)−1 t∑
i=0

(−1)i

(
t

i

)(
n− 2i

k − 2i

)
.

For general groups::

Pr(Diam > 2) ≤ (n− 1)p
(

n− 1, k, bn− 4
12

c
)

.

For elementary abelian 2-groups:

p(n− 1, k,
n− 1

2
)− k

n− 1
≤ Pr(Diam > 2)

≤ (n− 1)p
(

n− 1, k,
n− 1

2

)
.

We therefore want to know the asymptotics of p(n, k, t) for
the given values of t, and for various k depending on n.
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A basic estimate

Let T (y) be the event that there exists a path of length 2
from 1 to y, and let M = maxy PrT (y). Then

M − k

n− 1
≤ Pr(Diam > 2) ≤ (n− 1)M.

Details:

If diam Cay(G, S) > 2, there is y with S ∈ T (y).
If diam Cay(G, S) ≤ 2 then for every y, y ∈ S or S ∈ T (y).
Hence

PrT (y)− k

n− 1
≤ Pr(Diam > 2) ≤ Pr

⋃
y∈G∗

T (y).
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A more detailed estimate

Let
T (x, y) = {S | {x, x−1y} ⊆ S}.

be the event that there is a path 1 → x → y.

For each I ⊆ J with |I| = i, we have

Pr
⋂
x∈I

T (x, y) =
(

n− 1
k

)−1(n− 1− 2i

k − 2i

)
.

Suppose we have a set J of t such x’s such that the pairs
{x, x1y} are all distinct. Then by inclusion-exclusion

PrT (y) = 1− Pr
⋃

x∈G∗

T (x, y) ≤ 1− Pr
⋃
x∈J

T (x, y)

=
(

n− 1
k

)−1 t∑
i=1

(−1)i−1

(
t

i

)(
n− 1− 2i

k − 2i

)
.
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How big can t be?

Let

p(n, k, t) =
(

n

k

)−1 t∑
i=0

(−1)i

(
t

i

)(
n− 2i

k − 2i

)
.

We know that M ≤ p(n− 1, k, t), where t = |J |, and we want to
maximize t.

For elementary abelian 2-groups, M = p(n− 1, k, t) and can
take t = n−1

2 .

For general groups, can take t = bn−1−s
3 c and s is the number

of square roots of y in G.

Fact: no nonidentity element in a finite group has more than
3n/4 square roots. Thus for general groups we have

M ≤ p(n− 1, k, t) where t = bn− 4
12

c.
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Overview of results in this section

We want asymptotics of p(n, k, bn−4
12 c). The first step is the

exponential rate, namely the asymptotics as n →∞ of
rate := n−1 log a(n, k, t).

The linear case k ∼ cn is automatically handled by the
general multivariate GF asymptotics machinery of Pemantle
and Wilson (reported on in Strobl).

For other growth rates of k we derive uniform asymptotics
using methods of Manuel Lladser’s thesis (reported on in San
Miniato).

Result: if k = ω(
√

n log n) then

Pr(Diamn,k > 2) → 0 as n →∞.

Convergence is exponentially fast if k is linear in n and
superpolynomial otherwise.
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The generating function

Let a(n, k, t) =
(
n
k

)−1
p(n, k, t).

Combinatorial interpretation: a(n, k, t) is the number of
subsets of [n] of size k not containing any of a fixed collection
of t disjoint pairs from [n].
Note that 2t ≤ n, k + t ≤ n in this interpretation.

The trivariate GF assuming 2t ≤ n, k + t ≤ n is easily derived:∑
n,k,t

a(n, k, t)xnykzt =
1

1− x(1 + y)
1

1− zx2(1 + 2y)
.
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Reminder of mvGF techniques

Assume that locally F (z) = G(z)/H(z) =
∑

arzr is a
quotient of analytic functions.

Asymptotics of F (z) in direction r are determined by
contributing critical points of the singular variety V of F .

For generic combinatorial problems, there is exactly one
contributing point for each direction. These points satisfy
r ∈ dir(z) where dir(z) is a certain cone defined geometrically.

The exponential rate of the coefficients of F in direction r is
given by −r log z where z is a contributing point for that
direction. A full asymptotic expansion can be obtained when
the local geometry of V is nice enough.

Analyticity means expansions are uniform in large cones.
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Details of this mvGF computation

Here V consists of of two intersecting smooth hypersurfaces
V1,V2 in C3.

The contributing points all lie on the curve V1 ∩ V2. The
point z determines asymptotics in direction r if and only if
z ∈ V1 ∩ V2 and r ∈ dir(z).
The contributing point for direction r is found by solving a
system saying that H1 = 0,H2 = 0 and r is in the span of
dir1(z),dir2(z). There is a unique positive solution to this
system of 3 polynomial equations in 3 unknowns.

Upshot: to find asymptotics in direction (n, k, t) we use the
contributing point (1/(1 + y), y, (1 + y)2/(1 + 2y)) where
y > 0 and 2(n− k − t)y2 + (n− 3k)y + k = 0. In the case
k ∼ cn, t ∼ n/12, the exponential rate is readily computed.
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A picture of the singular variety
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Outline of approach in the case of sublinear k

The contributing points converge to a coordinate axis and the
above method requires extension.

Reduce to a 1-parameter problem: t and k are determined by
n, and t is linear in n.

Use Cauchy’s formula in a circle of radius r and convert to a
saddle point/stationary phase integral.

Tune the radius r of the circle of integration in order to
capture the correct exponential order.

Need uniform estimates, obtained by analyticity of the original
GF.

Extract subexponential factors by Laplace’s method or similar.
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Reduction to a 1-dimensional Fourier-Laplace integral

By expanding the GF, applying Cauchy’s integral formula, writing
the complex variable in polar form and normalizing we obtain

a(n, k, t) = [xnykzt]

= [yk](1 + y)n−2t(1 + 2y)t

=
r−k

2π

∫ π

−π
(1 + reiθ)n−2t(1 + 2reiθ)te−ikθ dθ

=: (2π)−1E(r;n, k, t)I(r;n, k, t)

where

E(r;n, k, t) := r−k(1 + r)n−2t(1 + 2r)t

I(r;n, k, t) :=
∫ π

−π

(
1 + reiθ

1 + r

)n−2t (
1 + 2reiθ

1 + 2r

)t

e−ikθ dθ.
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Dealing with I(r; n, k, t)

Write

I(r;n, k, t) =
∫ π

−π
e−nF (θ;r,d1,d2,d3) dθ

where

F (θ; r, d1, d2, d3) := id3θ − d1 log
1 + reiθ

1 + r
− d2 log

1 + 2reiθ

1 + 2r

and d1 := (n− 2t)/n, d2 := t/n, d3 := k/n.

For each (n, k, t) there is a unique r = r∗ > 0 for which θ = 0
is a strict local maximum for F .

In the linear case the classical Laplace approximation
hypotheses hold uniformly. and I(r∗;n, k, t) ∼ n−1/2. In the
sublinear case r∗ → 0, but we get a similar result eventually.

Upshot: rate p(n, k, t) = rate
(
n
k

)−1
E(r∗;n, k, t).
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Dealing with E(r; n, k, t)

The rate in question is equal to

d3 log d3 + (1− d3) log(1− d3)− d3 log r∗

+ (1− 2d2) log(1 + r∗) + d2 log(1 + 2r∗).

In the linear case k ∼ cn this converges to a constant R(c)
which is negative for c > 0.

In the sublinear case this is asymptotic to −d2
3/12 as n →∞.

Putting it all together with the subexponential factors we
obtain the advertised result.
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The elementary abelian 2-group case

We can solve exactly for M , and we have a lower bound. We
can also use a simpler generating function.

Result: p(n, k, n−2
2 ) has the same exponential growth rate as

b(t, k) := 2k

(
t

k

)(
2t

k

)−1

.

Stirling’s approximation gives the first-order asymptotics.

We have

rate = (2− λ) log(1− λ/2)− (1− λ) log(1− λ).

If k ∼ cn with 0 < c < 1/2, then λ = c and rate < 0. Note
that rate → 0 as λ → 0.
If λ = o(1) as n →∞ then rate ∼ −λ2/4 + O(λ3).
Thus we see that Prn,k(Diam > 2) converges to 0 as n →∞
provided k = ω(

√
n log n).
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The threshold

If k = ω(
√

n log n) then Pr(Diamn,k > 2) converges to zero
and if k = o(

√
n log n) then our upper bound does not. We

conjecture the existence of a sharp phase transition.

Our lower bound even in the abelian case is too weak to prove
this.

Robin Pemantle has indicated an argument based on
Poissonization that confirms the conjecture. We await its
appearance!
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What next?

The bounds are fairly crude and general - refine them and
specialize for various classes of groups.

Study the phase transition analytically in much more detail.

Study the behaviour of Diam when k ∼ c
√

n for c close to 1
(the Moore bound).

Extend to higher values of diameter?

Generalize and automate the asymptotic analysis used here in
the sublinear case.
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