The diameter of random Cayley digraphs

Mark C. Wilson
www.cs.auckland.ac.nz/~mcw/

Department of Computer Science
University of Auckland

Alden Biesen, 2006-07-06
(1) Basics
(2) Combinatorial bounds

3 Generating function analysis
(4) Conclusions

The genesis of this paper

- The second half was done by Manuel Lladser (Boulder) and Mark Wilson (Auckland) with major input from Robin Pemantle (Philadelphia) ...

The genesis of this paper

- The second half was done by Manuel Lladser (Boulder) and Mark Wilson (Auckland) with major input from Robin Pemantle (Philadelphia) ...
- who heard from Herb Wilf (Philadelphia) ...

The genesis of this paper

- The second half was done by Manuel Lladser (Boulder) and Mark Wilson (Auckland) with major input from Robin Pemantle (Philadelphia) ...
- who heard from Herb Wilf (Philadelphia) ...
- who was asked by Marko Petkovšek (Ljubljana) ... new zealand

The genesis of this paper

- The second half was done by Manuel Lladser (Boulder) and Mark Wilson (Auckland) with major input from Robin Pemantle (Philadelphia) ...
- who heard from Herb Wilf (Philadelphia) ...
- who was asked by Marko Petkovšek (Ljubljana) ...
- who was asked by Primož Potočnik (Ljubljana) and Jana Šiagiová (Bratislava) ...

The genesis of this paper

- The second half was done by Manuel Lladser (Boulder) and Mark Wilson (Auckland) with major input from Robin Pemantle (Philadelphia) ...
- who heard from Herb Wilf (Philadelphia) ...
- who was asked by Marko Petkovšek (Ljubljana) ...
- who was asked by Primož Potočnik (Ljubljana) and Jana Šiagiová (Bratislava) ...
- who had completed the first half while visiting Jozef Širáň (Auckland). (!)

Background and motivation

- Random graphs and digraphs have diameter 2 with high probability as long as they are not too sparse. new zealand

Background and motivation

- Random graphs and digraphs have diameter 2 with high probability as long as they are not too sparse.
- We wish to sharpen this for various families of graphs. In particular, we investigate the diameter of random Cayley digraphs.

Background and motivation

- Random graphs and digraphs have diameter 2 with high probability as long as they are not too sparse.
- We wish to sharpen this for various families of graphs. In particular, we investigate the diameter of random Cayley digraphs.
- Cayley graphs are often used as models for communications networks. The diameter is the number of rounds needed to send a message across the graph.

Background and motivation

- Random graphs and digraphs have diameter 2 with high probability as long as they are not too sparse.
- We wish to sharpen this for various families of graphs. In particular, we investigate the diameter of random Cayley digraphs.
- Cayley graphs are often used as models for communications networks. The diameter is the number of rounds needed to send a message across the graph.
- Cayley graphs are also useful for studying groups: the diameter is the maximum length of words in the generators required to generate G as a semigroup.

Background and motivation

- Random graphs and digraphs have diameter 2 with high probability as long as they are not too sparse.
- We wish to sharpen this for various families of graphs. In particular, we investigate the diameter of random Cayley digraphs.
- Cayley graphs are often used as models for communications networks. The diameter is the number of rounds needed to send a message across the graph.
- Cayley graphs are also useful for studying groups: the diameter is the maximum length of words in the generators required to generate G as a semigroup.
- Many combinatorial generation algorithms amount to finding Hamilton cycles in Cayley graphs.

Definitions

- Let G be a finite group and S a set of non-identity elements of G. The Cayley digraph $\Gamma=\operatorname{Cay}(G, S)$ has vertex set G and arcs of the form $(g, g s)$ where $g \in G, s \in S$.

Definitions

- Let G be a finite group and S a set of non-identity elements of G. The Cayley digraph $\Gamma=\operatorname{Cay}(G, S)$ has vertex set G and arcs of the form $(g, g s)$ where $g \in G, s \in S$.
- The distance $\partial(v, w)$ between v and w in G is the minimal number of arcs in a path from v to w.

Definitions

- Let G be a finite group and S a set of non-identity elements of G. The Cayley digraph $\Gamma=\operatorname{Cay}(G, S)$ has vertex set G and arcs of the form ($g, g s$) where $g \in G, s \in S$.
- The distance $\partial(v, w)$ between v and w in G is the minimal number of arcs in a path from v to w.
- The diameter diam (Γ) is the minimal d such that all distances between pairs of elements of Γ are at most d.

Definitions

- Let G be a finite group and S a set of non-identity elements of G. The Cayley digraph $\Gamma=\operatorname{Cay}(G, S)$ has vertex set G and arcs of the form $(g, g s)$ where $g \in G, s \in S$.
- The distance $\partial(v, w)$ between v and w in G is the minimal number of arcs in a path from v to w.
- The diameter $\operatorname{diam}(\Gamma)$ is the minimal d such that all distances between pairs of elements of Γ are at most d.
- By vertex-transitivity of $\Gamma, \operatorname{diam}(\Gamma)=\max _{v} \partial(1, v)$.

The main question

- How does diam $\operatorname{Cay}(G, S)$ behave asymptotically as $n \rightarrow \infty$? What relationship between $k:=|S|$ and $n:=|G|$ must hold in order that the diameter is equal to 2 with high probability? NEW ZEALAND

The main question

- How does diam $\operatorname{Cay}(G, S)$ behave asymptotically as $n \rightarrow \infty$? What relationship between $k:=|S|$ and $n:=|G|$ must hold in order that the diameter is equal to 2 with high probability?
- (Lower bound) The Moore bound shows that if $1+k^{2}<n$, then $\operatorname{diam} \operatorname{Cay}(G, S)>2$.

The main question

- How does diam $\operatorname{Cay}(G, S)$ behave asymptotically as $n \rightarrow \infty$? What relationship between $k:=|S|$ and $n:=|G|$ must hold in order that the diameter is equal to 2 with high probability?
- (Lower bound) The Moore bound shows that if $1+k^{2}<n$, then $\operatorname{diam} \operatorname{Cay}(G, S)>2$.
- (Upper bound) If $k \geq n / 2$ then $\operatorname{diam} \operatorname{Cay}(G, S)=2$.

The main question

- How does diam $\operatorname{Cay}(G, S)$ behave asymptotically as $n \rightarrow \infty$? What relationship between $k:=|S|$ and $n:=|G|$ must hold in order that the diameter is equal to 2 with high probability?
- (Lower bound) The Moore bound shows that if $1+k^{2}<n$, then $\operatorname{diam} \operatorname{Cay}(G, S)>2$.
- (Upper bound) If $k \geq n / 2$ then $\operatorname{diam} \operatorname{Cay}(G, S)=2$.
- What about the region between \sqrt{n} and $n / 2$?

The probability model

- For each k with $1 \leq k<n$, define $\mathbb{P}(G, k)$ to consist of all possible generating sets (as above) that have size k. Give \mathbb{P} the uniform measure.

The probability model

- For each k with $1 \leq k<n$, define $\mathbb{P}(G, k)$ to consist of all possible generating sets (as above) that have size k. Give \mathbb{P} the uniform measure.
- Let $\operatorname{Diam}_{n, k}$ be the random variable on \mathbb{P} equal to $\operatorname{diam} \operatorname{Cay}(G, S)$. NEW ZEALAND

The probability model

- For each k with $1 \leq k<n$, define $\mathbb{P}(G, k)$ to consist of all possible generating sets (as above) that have size k. Give \mathbb{P} the uniform measure.
- Let $\operatorname{Diam}_{n, k}$ be the random variable on \mathbb{P} equal to $\operatorname{diam} \operatorname{Cay}(G, S)$.
- We seek the asymptotics of $\operatorname{Pr}\left(\operatorname{Diam}_{n, k}>2\right)$ as $n \rightarrow \infty$ and k varies with n, say $k=f(n)$.

The probability model

- For each k with $1 \leq k<n$, define $\mathbb{P}(G, k)$ to consist of all possible generating sets (as above) that have size k. Give \mathbb{P} the uniform measure.
- Let $\operatorname{Diam}_{n, k}$ be the random variable on \mathbb{P} equal to $\operatorname{diam} \operatorname{Cay}(G, S)$.
- We seek the asymptotics of $\operatorname{Pr}\left(\operatorname{Diam}_{n, k}>2\right)$ as $n \rightarrow \infty$ and k varies with n, say $k=f(n)$.
- As far as we know even the linear case $f(n)=c n, 0<c<1 / 2$ is unexplored. Other interesting special cases: $k=\left\lfloor n^{\alpha}\right\rfloor$ for $1 / 2<\alpha<1$.

Overview of results of this section

- For $2 t \leq n, k \leq n$ define

$$
p(n, k, t)=\binom{n}{k}^{-1} \sum_{i=0}^{t}(-1)^{i}\binom{t}{i}\binom{n-2 i}{k-2 i} .
$$

Overview of results of this section

- For $2 t \leq n, k \leq n$ define

$$
p(n, k, t)=\binom{n}{k}^{-1} \sum_{i=0}^{t}(-1)^{i}\binom{t}{i}\binom{n-2 i}{k-2 i} .
$$

- For general groups::

$$
\operatorname{Pr}(\operatorname{Diam}>2) \leq(n-1) p\left(n-1, k,\left\lfloor\frac{n-4}{12}\right\rfloor\right) .
$$

Overview of results of this section

- For $2 t \leq n, k \leq n$ define

$$
p(n, k, t)=\binom{n}{k}^{-1} \sum_{i=0}^{t}(-1)^{i}\binom{t}{i}\binom{n-2 i}{k-2 i}
$$

- For general groups::

$$
\operatorname{Pr}(\operatorname{Diam}>2) \leq(n-1) p\left(n-1, k,\left\lfloor\frac{n-4}{12}\right\rfloor\right) .
$$

- For elementary abelian 2-groups:

$$
\begin{aligned}
p\left(n-1, k, \frac{n-1}{2}\right)-\frac{k}{n-1} & \leq \operatorname{Pr}(\operatorname{Diam}>2) \\
& \leq(n-1) p\left(n-1, k, \frac{n-1}{2}\right) .
\end{aligned}
$$

Overview of results of this section

- For $2 t \leq n, k \leq n$ define

$$
p(n, k, t)=\binom{n}{k}^{-1} \sum_{i=0}^{t}(-1)^{i}\binom{t}{i}\binom{n-2 i}{k-2 i} .
$$

- For general groups::

$$
\operatorname{Pr}(\operatorname{Diam}>2) \leq(n-1) p\left(n-1, k,\left\lfloor\frac{n-4}{12}\right\rfloor\right) .
$$

- For elementary abelian 2-groups:

$$
\begin{aligned}
p\left(n-1, k, \frac{n-1}{2}\right)-\frac{k}{n-1} & \leq \operatorname{Pr}(\operatorname{Diam}>2) \\
& \leq(n-1) p\left(n-1, k, \frac{n-1}{2}\right) .
\end{aligned}
$$

- We therefore want to know the asymptotics of $p(n, k, t)$ for the given values of t, and for various k depending on n.

A basic estimate

- Let $T(y)$ be the event that there exists a path of length 2 from 1 to y, and let $M=\max _{y} \operatorname{Pr} \overline{T(y)}$. Then

$$
M-\frac{k}{n-1} \leq \operatorname{Pr}(\operatorname{Diam}>2) \leq(n-1) M .
$$ NEW ZEALAND

A basic estimate

- Let $T(y)$ be the event that there exists a path of length 2 from 1 to y, and let $M=\max _{y} \operatorname{Pr} \overline{T(y)}$. Then

$$
M-\frac{k}{n-1} \leq \operatorname{Pr}(\operatorname{Diam}>2) \leq(n-1) M
$$

- Details: new zealand

A basic estimate

- Let $T(y)$ be the event that there exists a path of length 2 from 1 to y, and let $M=\max _{y} \operatorname{Pr} \overline{T(y)}$. Then

$$
M-\frac{k}{n-1} \leq \operatorname{Pr}(\operatorname{Diam}>2) \leq(n-1) M
$$

- Details:
- If diam $\operatorname{Cay}(G, S)>2$, there is y with $S \in \overline{T(y)}$. NEW Zealand

A basic estimate

- Let $T(y)$ be the event that there exists a path of length 2 from 1 to y, and let $M=\max _{y} \operatorname{Pr} \overline{T(y)}$. Then

$$
M-\frac{k}{n-1} \leq \operatorname{Pr}(\operatorname{Diam}>2) \leq(n-1) M
$$

- Details:
- If diam $\operatorname{Cay}(G, S)>2$, there is y with $S \in \overline{T(y)}$.
- If diam $\operatorname{Cay}(G, S) \leq 2$ then for every $y, y \in S$ or $S \in T(y)$.

A basic estimate

- Let $T(y)$ be the event that there exists a path of length 2 from 1 to y, and let $M=\max _{y} \operatorname{Pr} \overline{T(y)}$. Then

$$
M-\frac{k}{n-1} \leq \operatorname{Pr}(\operatorname{Diam}>2) \leq(n-1) M
$$

- Details:
- If diam $\operatorname{Cay}(G, S)>2$, there is y with $S \in \overline{T(y)}$.
- If diam $\operatorname{Cay}(G, S) \leq 2$ then for every $y, y \in S$ or $S \in T(y)$.
- Hence

$$
\operatorname{Pr} \overline{T(y)}-\frac{k}{n-1} \leq \operatorname{Pr}(\operatorname{Diam}>2) \leq \operatorname{Pr} \bigcup_{y \in G^{*}} \overline{T(y)} .
$$

A more detailed estimate

- Let

$$
T(x, y)=\left\{S \mid\left\{x, x^{-1} y\right\} \subseteq S\right\}
$$

be the event that there is a path $1 \rightarrow x \rightarrow y$.

A more detailed estimate

- Let

$$
T(x, y)=\left\{S \mid\left\{x, x^{-1} y\right\} \subseteq S\right\}
$$

be the event that there is a path $1 \rightarrow x \rightarrow y$.

- For each $I \subseteq J$ with $|I|=i$, we have

$$
\operatorname{Pr} \bigcap_{x \in I} T(x, y)=\binom{n-1}{k}^{-1}\binom{n-1-2 i}{k-2 i}
$$

A more detailed estimate

- Let

$$
T(x, y)=\left\{S \mid\left\{x, x^{-1} y\right\} \subseteq S\right\}
$$

be the event that there is a path $1 \rightarrow x \rightarrow y$.

- For each $I \subseteq J$ with $|I|=i$, we have

$$
\operatorname{Pr} \bigcap_{x \in I} T(x, y)=\binom{n-1}{k}^{-1}\binom{n-1-2 i}{k-2 i} .
$$

- Suppose we have a set J of t such x 's such that the pairs $\left\{x, x^{1} y\right\}$ are all distinct. Then by inclusion-exclusion

$$
\begin{aligned}
\operatorname{Pr} \overline{T(y)} & =1-\operatorname{Pr} \bigcup_{x \in G^{*}} T(x, y) \leq 1-\operatorname{Pr} \bigcup_{x \in J} T(x, y) \\
& =\binom{n-1}{k}^{-1} \sum_{i=1}^{t}(-1)^{i-1}\binom{t}{i}\binom{n-1-2 i}{k-2 i} .
\end{aligned}
$$

How big can t be?

Let

$$
p(n, k, t)=\binom{n}{k}^{-1} \sum_{i=0}^{t}(-1)^{i}\binom{t}{i}\binom{n-2 i}{k-2 i} .
$$

We know that $M \leq p(n-1, k, t)$, where $t=|J|$, and we want to maximize t.

- For elementary abelian 2-groups, $M=p(n-1, k, t)$ and can take $t=\frac{n-1}{2}$.

How big can t be?

Let

$$
p(n, k, t)=\binom{n}{k}^{-1} \sum_{i=0}^{t}(-1)^{i}\binom{t}{i}\binom{n-2 i}{k-2 i} .
$$

We know that $M \leq p(n-1, k, t)$, where $t=|J|$, and we want to maximize t.

- For elementary abelian 2-groups, $M=p(n-1, k, t)$ and can take $t=\frac{n-1}{2}$.
- For general groups, can take $t=\left\lfloor\frac{n-1-s}{3}\right\rfloor$ and s is the number of square roots of y in G.

How big can t be?

Let

$$
p(n, k, t)=\binom{n}{k}^{-1} \sum_{i=0}^{t}(-1)^{i}\binom{t}{i}\binom{n-2 i}{k-2 i} .
$$

We know that $M \leq p(n-1, k, t)$, where $t=|J|$, and we want to maximize t.

- For elementary abelian 2-groups, $M=p(n-1, k, t)$ and can take $t=\frac{n-1}{2}$.
- For general groups, can take $t=\left\lfloor\frac{n-1-s}{3}\right\rfloor$ and s is the number of square roots of y in G.
- Fact: no nonidentity element in a finite group has more than $3 n / 4$ square roots. Thus for general groups we have

$$
M \leq p(n-1, k, t) \quad \text { where } t=\left\lfloor\frac{n-4}{12}\right\rfloor
$$

Overview of results in this section

- We want asymptotics of $p\left(n, k,\left\lfloor\frac{n-4}{12}\right\rfloor\right)$. The first step is the exponential rate, namely the asymptotics as $n \rightarrow \infty$ of rate $:=n^{-1} \log a(n, k, t)$.

Overview of results in this section

- We want asymptotics of $p\left(n, k,\left\lfloor\frac{n-4}{12}\right\rfloor\right)$. The first step is the exponential rate, namely the asymptotics as $n \rightarrow \infty$ of rate $:=n^{-1} \log a(n, k, t)$.
- The linear case $k \sim c n$ is automatically handled by the general multivariate GF asymptotics machinery of Pemantle and Wilson (reported on in Strobl).

Overview of results in this section

- We want asymptotics of $p\left(n, k,\left\lfloor\frac{n-4}{12}\right\rfloor\right)$. The first step is the exponential rate, namely the asymptotics as $n \rightarrow \infty$ of rate $:=n^{-1} \log a(n, k, t)$.
- The linear case $k \sim c n$ is automatically handled by the general multivariate GF asymptotics machinery of Pemantle and Wilson (reported on in Strobl).
- For other growth rates of k we derive uniform asymptotics using methods of Manuel Lladser's thesis (reported on in San Miniato).

Overview of results in this section

- We want asymptotics of $p\left(n, k,\left\lfloor\frac{n-4}{12}\right\rfloor\right)$. The first step is the exponential rate, namely the asymptotics as $n \rightarrow \infty$ of rate $:=n^{-1} \log a(n, k, t)$.
- The linear case $k \sim c n$ is automatically handled by the general multivariate GF asymptotics machinery of Pemantle and Wilson (reported on in Strobl).
- For other growth rates of k we derive uniform asymptotics using methods of Manuel Lladser's thesis (reported on in San Miniato).
- Result: if $k=\omega(\sqrt{n \log n})$ then

$$
\operatorname{Pr}\left(\operatorname{Diam}_{n, k}>2\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

Convergence is exponentially fast if k is linear in n and superpolynomial otherwise.

The generating function

- Let $a(n, k, t)=\binom{n}{k}^{-1} p(n, k, t)$.

The generating function

- Let $a(n, k, t)=\binom{n}{k}^{-1} p(n, k, t)$.
- Combinatorial interpretation: $a(n, k, t)$ is the number of subsets of $[n]$ of size k not containing any of a fixed collection of t disjoint pairs from $[n]$.

The generating function

- Let $a(n, k, t)=\binom{n}{k}^{-1} p(n, k, t)$.
- Combinatorial interpretation: $a(n, k, t)$ is the number of subsets of $[n]$ of size k not containing any of a fixed collection of t disjoint pairs from $[n]$.
- Note that $2 t \leq n, k+t \leq n$ in this interpretation.

The generating function

- Let $a(n, k, t)=\binom{n}{k}^{-1} p(n, k, t)$.
- Combinatorial interpretation: $a(n, k, t)$ is the number of subsets of $[n]$ of size k not containing any of a fixed collection of t disjoint pairs from $[n]$.
- Note that $2 t \leq n, k+t \leq n$ in this interpretation.
- The trivariate GF assuming $2 t \leq n, k+t \leq n$ is easily derived:

$$
\sum_{n, k, t} a(n, k, t) x^{n} y^{k} z^{t}=\frac{1}{1-x(1+y)} \frac{1}{1-z x^{2}(1+2 y)}
$$

Reminder of mvGF techniques

- Assume that locally $F(\mathbf{z})=G(\mathbf{z}) / H(\mathbf{z})=\sum a_{\mathbf{r}} \mathbf{z}^{\mathbf{r}}$ is a quotient of analytic functions.

Reminder of mvGF techniques

- Assume that locally $F(\mathbf{z})=G(\mathbf{z}) / H(\mathbf{z})=\sum a_{\mathbf{r}} \mathbf{z}^{\mathbf{r}}$ is a quotient of analytic functions.
- Asymptotics of $F(\mathbf{z})$ in direction \mathbf{r} are determined by contributing critical points of the singular variety \mathcal{V} of F.

Reminder of mvGF techniques

- Assume that locally $F(\mathbf{z})=G(\mathbf{z}) / H(\mathbf{z})=\sum a_{\mathbf{r}} \mathbf{z}^{\mathbf{r}}$ is a quotient of analytic functions.
- Asymptotics of $F(\mathbf{z})$ in direction \mathbf{r} are determined by contributing critical points of the singular variety \mathcal{V} of F.
- For generic combinatorial problems, there is exactly one contributing point for each direction. These points satisfy $\mathbf{r} \in \operatorname{dir}(\mathbf{z})$ where $\operatorname{dir}(\mathbf{z})$ is a certain cone defined geometrically.

Reminder of mvGF techniques

- Assume that locally $F(\mathbf{z})=G(\mathbf{z}) / H(\mathbf{z})=\sum a_{\mathbf{r}} \mathbf{z}^{\mathbf{r}}$ is a quotient of analytic functions.
- Asymptotics of $F(\mathbf{z})$ in direction \mathbf{r} are determined by contributing critical points of the singular variety \mathcal{V} of F.
- For generic combinatorial problems, there is exactly one contributing point for each direction. These points satisfy $\mathbf{r} \in \operatorname{dir}(\mathbf{z})$ where $\operatorname{dir}(\mathbf{z})$ is a certain cone defined geometrically.
- The exponential rate of the coefficients of F in direction \mathbf{r} is given by $-\mathbf{r} \log \mathbf{z}$ where \mathbf{z} is a contributing point for that direction. A full asymptotic expansion can be obtained when the local geometry of \mathcal{V} is nice enough.

Reminder of mvGF techniques

- Assume that locally $F(\mathbf{z})=G(\mathbf{z}) / H(\mathbf{z})=\sum a_{\mathbf{r}} \mathbf{z}^{\mathbf{r}}$ is a quotient of analytic functions.
- Asymptotics of $F(\mathbf{z})$ in direction \mathbf{r} are determined by contributing critical points of the singular variety \mathcal{V} of F.
- For generic combinatorial problems, there is exactly one contributing point for each direction. These points satisfy $\mathbf{r} \in \operatorname{dir}(\mathbf{z})$ where $\operatorname{dir}(\mathbf{z})$ is a certain cone defined geometrically.
- The exponential rate of the coefficients of F in direction \mathbf{r} is given by $-\mathbf{r} \log \mathbf{z}$ where \mathbf{z} is a contributing point for that direction. A full asymptotic expansion can be obtained when the local geometry of \mathcal{V} is nice enough.
- Analyticity means expansions are uniform in large cones.

Details of this mvGF computation

- Here \mathcal{V} consists of of two intersecting smooth hypersurfaces $\mathcal{V}_{1}, \mathcal{V}_{2}$ in \mathbb{C}^{3}.

Details of this mvGF computation

- Here \mathcal{V} consists of of two intersecting smooth hypersurfaces $\mathcal{V}_{1}, \mathcal{V}_{2}$ in \mathbb{C}^{3}.
- The contributing points all lie on the curve $\mathcal{V}_{1} \cap \mathcal{V}_{2}$. The point \mathbf{z} determines asymptotics in direction \mathbf{r} if and only if $\mathbf{z} \in \mathcal{V}_{1} \cap \mathcal{V}_{2}$ and $\mathbf{r} \in \operatorname{dir}(\mathbf{z})$. new zealand

Details of this mvGF computation

- Here \mathcal{V} consists of of two intersecting smooth hypersurfaces $\mathcal{V}_{1}, \mathcal{V}_{2}$ in \mathbb{C}^{3}.
- The contributing points all lie on the curve $\mathcal{V}_{1} \cap \mathcal{V}_{2}$. The point \mathbf{z} determines asymptotics in direction \mathbf{r} if and only if $\mathbf{z} \in \mathcal{V}_{1} \cap \mathcal{V}_{2}$ and $\mathbf{r} \in \operatorname{dir}(\mathbf{z})$.
- The contributing point for direction \mathbf{r} is found by solving a system saying that $H_{1}=0, H_{2}=0$ and \mathbf{r} is in the span of $\operatorname{dir}_{1}(\mathbf{z}), \operatorname{dir}_{2}(\mathbf{z})$. There is a unique positive solution to this system of 3 polynomial equations in 3 unknowns.

Details of this mvGF computation

- Here \mathcal{V} consists of of two intersecting smooth hypersurfaces $\mathcal{V}_{1}, \mathcal{V}_{2}$ in \mathbb{C}^{3}.
- The contributing points all lie on the curve $\mathcal{V}_{1} \cap \mathcal{V}_{2}$. The point \mathbf{z} determines asymptotics in direction \mathbf{r} if and only if $\mathbf{z} \in \mathcal{V}_{1} \cap \mathcal{V}_{2}$ and $\mathbf{r} \in \operatorname{dir}(\mathbf{z})$.
- The contributing point for direction \mathbf{r} is found by solving a system saying that $H_{1}=0, H_{2}=0$ and \mathbf{r} is in the span of $\operatorname{dir}_{1}(\mathbf{z}), \operatorname{dir}_{2}(\mathbf{z})$. There is a unique positive solution to this system of 3 polynomial equations in 3 unknowns.
- Upshot: to find asymptotics in direction (n, k, t) we use the contributing point $\left(1 /(1+y), y,(1+y)^{2} /(1+2 y)\right)$ where $y>0$ and $2(n-k-t) y^{2}+(n-3 k) y+k=0$. In the case $k \sim c n, t \sim n / 12$, the exponential rate is readily computed.

A picture of the singular variety

Outline of approach in the case of sublinear k

- The contributing points converge to a coordinate axis and the above method requires extension.
- Reduce to a 1-parameter problem: t and k are determined by n, and t is linear in n.
- Use Cauchy's formula in a circle of radius r and convert to a saddle point/stationary phase integral.
- Tune the radius r of the circle of integration in order to capture the correct exponential order.
- Need uniform estimates, obtained by analyticity of the original GF.
- Extract subexponential factors by Laplace's method or similar.

Reduction to a 1-dimensional Fourier-Laplace integral

By expanding the GF, applying Cauchy's integral formula, writing the complex variable in polar form and normalizing we obtain

$$
\begin{aligned}
a(n, k, t) & =\left[x^{n} y^{k} z^{t}\right] \\
& =\left[y^{k}\right](1+y)^{n-2 t}(1+2 y)^{t} \\
& =\frac{r^{-k}}{2 \pi} \int_{-\pi}^{\pi}\left(1+r e^{i \theta}\right)^{n-2 t}\left(1+2 r e^{i \theta}\right)^{t} e^{-i k \theta} d \theta \\
& =:(2 \pi)^{-1} E(r ; n, k, t) I(r ; n, k, t)
\end{aligned}
$$

where

$$
\begin{aligned}
E(r ; n, k, t) & :=r^{-k}(1+r)^{n-2 t}(1+2 r)^{t} \\
I(r ; n, k, t) & :=\int_{-\pi}^{\pi}\left(\frac{1+r e^{i \theta}}{1+r}\right)^{n-2 t}\left(\frac{1+2 r e^{i \theta}}{1+2 r}\right)^{t} e^{-i k \theta} d \theta
\end{aligned}
$$

Dealing with $I(r ; n, k, t)$

- Write

$$
I(r ; n, k, t)=\int_{-\pi}^{\pi} e^{-n F\left(\theta ; r, d_{1}, d_{2}, d_{3}\right)} d \theta
$$

where
$F\left(\theta ; r, d_{1}, d_{2}, d_{3}\right):=i d_{3} \theta-d_{1} \log \frac{1+r e^{i \theta}}{1+r}-d_{2} \log \frac{1+2 r e^{i \theta}}{1+2 r}$
and $d_{1}:=(n-2 t) / n, d_{2}:=t / n, d_{3}:=k / n$.

Dealing with $I(r ; n, k, t)$

- Write

$$
I(r ; n, k, t)=\int_{-\pi}^{\pi} e^{-n F\left(\theta ; r, d_{1}, d_{2}, d_{3}\right)} d \theta
$$

where

$$
F\left(\theta ; r, d_{1}, d_{2}, d_{3}\right):=i d_{3} \theta-d_{1} \log \frac{1+r e^{i \theta}}{1+r}-d_{2} \log \frac{1+2 r e^{i \theta}}{1+2 r}
$$

and $d_{1}:=(n-2 t) / n, d_{2}:=t / n, d_{3}:=k / n$.

- For each (n, k, t) there is a unique $r=r^{*}>0$ for which $\theta=0$ is a strict local maximum for F.

Dealing with $I(r ; n, k, t)$

- Write

$$
I(r ; n, k, t)=\int_{-\pi}^{\pi} e^{-n F\left(\theta ; r, d_{1}, d_{2}, d_{3}\right)} d \theta
$$

where

$$
F\left(\theta ; r, d_{1}, d_{2}, d_{3}\right):=i d_{3} \theta-d_{1} \log \frac{1+r e^{i \theta}}{1+r}-d_{2} \log \frac{1+2 r e^{i \theta}}{1+2 r}
$$

and $d_{1}:=(n-2 t) / n, d_{2}:=t / n, d_{3}:=k / n$.

- For each (n, k, t) there is a unique $r=r^{*}>0$ for which $\theta=0$ is a strict local maximum for F.
- In the linear case the classical Laplace approximation hypotheses hold uniformly. and $I\left(r^{*} ; n, k, t\right) \sim n^{-1 / 2}$. In the sublinear case $r^{*} \rightarrow 0$, but we get a similar result eventually.

Dealing with $I(r ; n, k, t)$

- Write

$$
I(r ; n, k, t)=\int_{-\pi}^{\pi} e^{-n F\left(\theta ; r, d_{1}, d_{2}, d_{3}\right)} d \theta
$$

where

$$
F\left(\theta ; r, d_{1}, d_{2}, d_{3}\right):=i d_{3} \theta-d_{1} \log \frac{1+r e^{i \theta}}{1+r}-d_{2} \log \frac{1+2 r e^{i \theta}}{1+2 r}
$$

and $d_{1}:=(n-2 t) / n, d_{2}:=t / n, d_{3}:=k / n$.

- For each (n, k, t) there is a unique $r=r^{*}>0$ for which $\theta=0$ is a strict local maximum for F.
- In the linear case the classical Laplace approximation hypotheses hold uniformly. and $I\left(r^{*} ; n, k, t\right) \sim n^{-1 / 2}$. In the sublinear case $r^{*} \rightarrow 0$, but we get a similar result eventually.
- Upshot: rate $p(n, k, t)=\operatorname{rate}\binom{n}{k}^{-1} E\left(r^{*} ; n, k, t\right)$.

Dealing with $E(r ; n, k, t)$

- The rate in question is equal to

$$
\begin{aligned}
& d_{3} \log d_{3}+\left(1-d_{3}\right) \log \left(1-d_{3}\right)-d_{3} \log r^{*} \\
& +\left(1-2 d_{2}\right) \log \left(1+r^{*}\right)+d_{2} \log \left(1+2 r^{*}\right)
\end{aligned}
$$

Dealing with $E(r ; n, k, t)$

- The rate in question is equal to

$$
\begin{aligned}
& d_{3} \log d_{3}+\left(1-d_{3}\right) \log \left(1-d_{3}\right)-d_{3} \log r^{*} \\
& +\left(1-2 d_{2}\right) \log \left(1+r^{*}\right)+d_{2} \log \left(1+2 r^{*}\right) .
\end{aligned}
$$

- In the linear case $k \sim c n$ this converges to a constant $R(c)$ which is negative for $c>0$.

Dealing with $E(r ; n, k, t)$

- The rate in question is equal to

$$
\begin{aligned}
& d_{3} \log d_{3}+\left(1-d_{3}\right) \log \left(1-d_{3}\right)-d_{3} \log r^{*} \\
& +\left(1-2 d_{2}\right) \log \left(1+r^{*}\right)+d_{2} \log \left(1+2 r^{*}\right) .
\end{aligned}
$$

- In the linear case $k \sim c n$ this converges to a constant $R(c)$ which is negative for $c>0$.
- In the sublinear case this is asymptotic to $-d_{3}^{2} / 12$ as $n \rightarrow \infty$.

Dealing with $E(r ; n, k, t)$

- The rate in question is equal to

$$
\begin{aligned}
& d_{3} \log d_{3}+\left(1-d_{3}\right) \log \left(1-d_{3}\right)-d_{3} \log r^{*} \\
& +\left(1-2 d_{2}\right) \log \left(1+r^{*}\right)+d_{2} \log \left(1+2 r^{*}\right) .
\end{aligned}
$$

- In the linear case $k \sim c n$ this converges to a constant $R(c)$ which is negative for $c>0$.
- In the sublinear case this is asymptotic to $-d_{3}^{2} / 12$ as $n \rightarrow \infty$.
- Putting it all together with the subexponential factors we obtain the advertised result.

The elementary abelian 2-group case

- We can solve exactly for M, and we have a lower bound. We can also use a simpler generating function.

The elementary abelian 2-group case

- We can solve exactly for M, and we have a lower bound. We can also use a simpler generating function.
- Result: $p\left(n, k, \frac{n-2}{2}\right)$ has the same exponential growth rate as

$$
b(t, k):=2^{k}\binom{t}{k}\binom{2 t}{k}^{-1}
$$

The elementary abelian 2-group case

- We can solve exactly for M, and we have a lower bound. We can also use a simpler generating function.
- Result: $p\left(n, k, \frac{n-2}{2}\right)$ has the same exponential growth rate as

$$
b(t, k):=2^{k}\binom{t}{k}\binom{2 t}{k}^{-1}
$$

- Stirling's approximation gives the first-order asymptotics.

The elementary abelian 2-group case

- We can solve exactly for M, and we have a lower bound. We can also use a simpler generating function.
- Result: $p\left(n, k, \frac{n-2}{2}\right)$ has the same exponential growth rate as

$$
b(t, k):=2^{k}\binom{t}{k}\binom{2 t}{k}^{-1}
$$

- Stirling's approximation gives the first-order asymptotics.
- We have

$$
\text { rate }=(2-\lambda) \log (1-\lambda / 2)-(1-\lambda) \log (1-\lambda) .
$$

The elementary abelian 2-group case

- We can solve exactly for M, and we have a lower bound. We can also use a simpler generating function.
- Result: $p\left(n, k, \frac{n-2}{2}\right)$ has the same exponential growth rate as

$$
b(t, k):=2^{k}\binom{t}{k}\binom{2 t}{k}^{-1}
$$

- Stirling's approximation gives the first-order asymptotics.
- We have

$$
\text { rate }=(2-\lambda) \log (1-\lambda / 2)-(1-\lambda) \log (1-\lambda) .
$$

- If $k \sim c n$ with $0<c<1 / 2$, then $\lambda=c$ and rate <0. Note that rate $\rightarrow 0$ as $\lambda \rightarrow 0$.

The elementary abelian 2-group case

- We can solve exactly for M, and we have a lower bound. We can also use a simpler generating function.
- Result: $p\left(n, k, \frac{n-2}{2}\right)$ has the same exponential growth rate as

$$
b(t, k):=2^{k}\binom{t}{k}\binom{2 t}{k}^{-1}
$$

- Stirling's approximation gives the first-order asymptotics.
- We have

$$
\text { rate }=(2-\lambda) \log (1-\lambda / 2)-(1-\lambda) \log (1-\lambda) .
$$

- If $k \sim c n$ with $0<c<1 / 2$, then $\lambda=c$ and rate <0. Note that rate $\rightarrow 0$ as $\lambda \rightarrow 0$.
- If $\lambda=o(1)$ as $n \rightarrow \infty$ then rate $\sim-\lambda^{2} / 4+O\left(\lambda^{3}\right)$.

The elementary abelian 2-group case

- We can solve exactly for M, and we have a lower bound. We can also use a simpler generating function.
- Result: $p\left(n, k, \frac{n-2}{2}\right)$ has the same exponential growth rate as

$$
b(t, k):=2^{k}\binom{t}{k}\binom{2 t}{k}^{-1}
$$

- Stirling's approximation gives the first-order asymptotics.
- We have

$$
\text { rate }=(2-\lambda) \log (1-\lambda / 2)-(1-\lambda) \log (1-\lambda)
$$

- If $k \sim c n$ with $0<c<1 / 2$, then $\lambda=c$ and rate <0. Note that rate $\rightarrow 0$ as $\lambda \rightarrow 0$.
- If $\lambda=o(1)$ as $n \rightarrow \infty$ then rate $\sim-\lambda^{2} / 4+O\left(\lambda^{3}\right)$.
- Thus we see that $\operatorname{Pr}_{n, k}(\operatorname{Diam}>2)$ converges to 0 as $n \rightarrow \infty$ provided $k=\omega(\sqrt{n \log n})$.

The threshold

- If $k=\omega(\sqrt{n \log n})$ then $\operatorname{Pr}\left(\operatorname{Diam}_{n, k}>2\right)$ converges to zero and if $k=o(\sqrt{n \log n})$ then our upper bound does not. We conjecture the existence of a sharp phase transition.
- Our lower bound even in the abelian case is too weak to prove this.
- Robin Pemantle has indicated an argument based on Poissonization that confirms the conjecture. We await its appearance!

What next?

- The bounds are fairly crude and general - refine them and specialize for various classes of groups.
- Study the phase transition analytically in much more detail.
- Study the behaviour of Diam when $k \sim c \sqrt{n}$ for c close to 1 (the Moore bound).
- Extend to higher values of diameter?
- Generalize and automate the asymptotic analysis used here in the sublinear case.

