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Background

Given a (multivariate) sequence an of complex numbers
(usually integers) arising in a combinatorial problem, we wish
to find an exact or asymptotic formula for large |n|.
Sequences come from areas like analysis of algorithms,
computational biology, information theory, queueing theory,
statistical physics.

Sequence often gives size or statistics of large random
structures.

Typically, we apply a transform to the sequence f (generating
function, Mellin transform, ...), yielding a complex function F .
We then study the singularities of F and extract information
on the original sequence via complex analysis.

Computer algebra systems can automate much of the work;
computations are often straightforward but horrible to do by
hand.
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Generating functions

The (ordinary) generating function (GF) of the sequence
f : N → C is the formal power series F (z) =

∑
f(n)zn, and

element of C[[z]] := A. We write [zn]F (z) = an.

In most applications F converges in a neighbourhood of the
origin and defines an analytic function there. It can often be
extended by analytic continuation.

Natural operations on sequences correspond to natural
operations in A. For example,

[zn]F (z) + G(z) = f(n) + g(n)
[zn]F (z)G(z) =

∑
j+k=n f(j)g(k)

[zn]zF ′(z) = nf(n)
[zn](F (z)− F (0))/z = f(n + 1)
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Advantages of GFs

Provide a compact representation of the sequence.

Well adapted for computer algebra manipulation; symbolic
computation avoids numerical errors and can yield insight.

Can prove identities, simplify sums.

Can solve recurrences (difference equations).

Can yield recurrences, and hence fast computation algorithms.

Can derive statistics routinely.

Allow extraction of asymptotic approximations.

The GF is the best all-round tool in this area.
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Toy example

Fibonacci numbers: an = an−1 + an−2, a0 = 0, a1 = 1.

Let F (z) =
∑

n anzn. Then F (z)− z = zF (z) + z2F (z) so
F (z) = z/(1− z − z2).

Use partial fractions to write

F (z) =
1√
5

(
1

1− φz
− 1

1 + φ−1z

)
φ :=

1 +
√

5

2
.

Use geometric series formula (table lookup) to get

an =
1√
5

(
φn − (−1)nφ−n

)
≈ 1√

5
φn.

Essentially, we want to automate all parts of this process, for
more general recurrences/functional equations and general
dimension.



Outline Generating functions Computation of univariate GFs Computation of multivariate GFs

Toy example

Fibonacci numbers: an = an−1 + an−2, a0 = 0, a1 = 1.

Let F (z) =
∑

n anzn. Then F (z)− z = zF (z) + z2F (z) so
F (z) = z/(1− z − z2).

Use partial fractions to write

F (z) =
1√
5

(
1

1− φz
− 1

1 + φ−1z

)
φ :=

1 +
√

5

2
.

Use geometric series formula (table lookup) to get

an =
1√
5

(
φn − (−1)nφ−n

)
≈ 1√

5
φn.

Essentially, we want to automate all parts of this process, for
more general recurrences/functional equations and general
dimension.



Outline Generating functions Computation of univariate GFs Computation of multivariate GFs

Toy example

Fibonacci numbers: an = an−1 + an−2, a0 = 0, a1 = 1.

Let F (z) =
∑

n anzn. Then F (z)− z = zF (z) + z2F (z) so
F (z) = z/(1− z − z2).

Use partial fractions to write

F (z) =
1√
5

(
1

1− φz
− 1

1 + φ−1z

)
φ :=

1 +
√

5

2
.

Use geometric series formula (table lookup) to get

an =
1√
5

(
φn − (−1)nφ−n

)
≈ 1√

5
φn.

Essentially, we want to automate all parts of this process, for
more general recurrences/functional equations and general
dimension.



Outline Generating functions Computation of univariate GFs Computation of multivariate GFs

Toy example

Fibonacci numbers: an = an−1 + an−2, a0 = 0, a1 = 1.

Let F (z) =
∑

n anzn. Then F (z)− z = zF (z) + z2F (z) so
F (z) = z/(1− z − z2).

Use partial fractions to write

F (z) =
1√
5

(
1

1− φz
− 1

1 + φ−1z

)
φ :=

1 +
√

5

2
.

Use geometric series formula (table lookup) to get

an =
1√
5

(
φn − (−1)nφ−n

)
≈ 1√

5
φn.

Essentially, we want to automate all parts of this process, for
more general recurrences/functional equations and general
dimension.



Outline Generating functions Computation of univariate GFs Computation of multivariate GFs

Toy example

Fibonacci numbers: an = an−1 + an−2, a0 = 0, a1 = 1.

Let F (z) =
∑

n anzn. Then F (z)− z = zF (z) + z2F (z) so
F (z) = z/(1− z − z2).

Use partial fractions to write

F (z) =
1√
5

(
1

1− φz
− 1

1 + φ−1z

)
φ :=

1 +
√

5

2
.

Use geometric series formula (table lookup) to get

an =
1√
5

(
φn − (−1)nφ−n

)
≈ 1√

5
φn.

Essentially, we want to automate all parts of this process, for
more general recurrences/functional equations and general
dimension.



Outline Generating functions Computation of univariate GFs Computation of multivariate GFs

The hierarchy of GFs

Some classes of GFs occur often and are nice from the
viewpoint of computational algebra.

Rational (satisfies linear equation over C[z])

=⇒ algebraic (satisfies polynomial equation over C[z])

=⇒ holonomic (satisfies linear ODE over C[z]).

The first implication is trivial, the second is a theorem of
Comtet (1964), and there is an algorithm to find the least
degree ODE.



Outline Generating functions Computation of univariate GFs Computation of multivariate GFs

Recurrences yield functional equations

Key idea: a recurrence relation on a sequence is equivalent to
a functional equation satisfied by the GF.
Standard example: the quicksort recurrence. The expected
number of comparisons of (randomized) quicksort on an input
permutation of size n satisfies

an = n− 1 +
2

n

n−1∑
p=1

ap; a0 = 0.

The GF then satisfies, by the rules above, the first order linear
ODE

zF ′(z) = 2z2/(1− z)3 + 2zF (z)/(1− z); F (0) = 0.

F is rational iff f satisfies a linear recurrence with constant
coefficients
F is holonomic iff f satisfies a linear recurrence with
polynomial coefficients.
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Functional equations can yield better recurrences

The counting GF of binary trees by internal nodes satisfies
T (z) = 1 + zT (z)2 (later). This is equivalent to the quadratic
recurrence an =

∑
k<n akan−1−k, a0 = 1.

Since GF is algebraic, hence holonomic, there should be a
linear recurrence.

The answer is

(4z2 − z)T ′(z) + (2z − 1)T (z) + 1 = 0

leading to the recurrence

(n + 1)an = (4n− 2)an−1 a0 = 1.

This allows for much faster computation and makes it plain
that an involves a quotient of factorials. In particular it
follows that an = 1

n+1

(2n
n

)
, the nth Catalan number.
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The symbolic method

The symbolic method I

Many recurrences occurring in enumeration are special cases
of general constructions. The computation can be done once
and for all. This leads to a formal grammar for combinatorial
classes.

A combinatorial class is a set X with a (size) function
| · | : X → N such that for all x ∈ X, n ∈ N, the inverse image
{x ∈ X | |x| = n} is finite.

Let A be a combinatorial class, with |An| = an. The counting
GF for A is A(z) =

∑
n anzn =

∑
a∈A z|a|.

Classic examples: strings/trees/permutations/mappings with
various constraints.
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The symbolic method

The symbolic method II

Let A,B be combinatorial classes with counting GFs
A(z), B(z). The size of an ordered pair of objects (α, β) is
defined to be |α|+ |β|.
The counting OGF of A× B is then∑
γ∈A×B

z|γ| =
∑
α∈A

∑
β∈B

z|α|+|β| =
∑
α∈A

z|α|
∑
β∈B

z|β| = A(z)B(z).

Also the GF for A ∪ B is A(z) + B(z) if the classes are
disjoint. Thus the GF for the set of sequences of elements of
A is 1 + A(z) + A(z)2 + · · · = (1−A(z))−1.

Similar but more complicated formulae arise for sets,
multisets, cycles, etc, involving exp, log and some special
infinite series.
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The symbolic method

Symbolic method example

A binary tree is either a single external node or an internal
node connected to a pair of binary trees. Let T be the class
of binary trees:

T = {ext} ∪ {int} × T × T .

In terms of a formal grammar

< tree >=< ext > + < int > × < tree > × < tree > .

Give < ext > weight a and < int > weight b to obtain
T (z) = za + zbT (z)2. Special cases: a = 0, b = 1 counts trees
by internal nodes; a = 1, b = 0 by external nodes; a = b = 1
by total nodes.
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The symbolic method

Substring patterns - autocorrelation polynomial

Given arbitrary binary string σ = σ0σ1 · · ·σk−1 of length k.

For 0 ≤ j ≤ 1, shift σ right j places. Define cj = 1 if the
overlap matches the tail σ(j) of σ, cj = 0 otherwise. The
autocorrelation polynomial is c(z) =

∑
j cjz

j .

Let S, (resp. T ) be the set of bitstrings not containing p
(resp. containing it once at the end). Then

S ∪ T ∼= {ε} ∪ S × {0, 1}
S × {σ} ∼= T × ∪j:cj 6=0σ

(j)

and the symbolic method gives S(z) + T (z) = 1 + 2zS(z)
and S(z)zk = T (z)c(z). Thus

S(z) =
c(z)

zk + (1− 2z)c(z)
.
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General results

Rational GFs

A linear recurrence relation with constant coefficients yields a
rational GF and vice versa.
Rational GFs always arise from the transfer matrix method.
Special case: the counting GF of a regular language is rational
(Chomsky-Schutzenberger, 1963). Thus if we construct a
combinatorial class iteratively using only disjoint union,
cartesian product, and sequence, the counting GF is rational.
Example: let S ⊆ N. An S-composition of n is simply a
sequence with terms from S whose sum is n. If G(z) is the
counting GF of S then F (z) = (1−G(z))−1 enumerates
S-compositions. Taking S = {1, 2, . . . ,m} yields

F (z) =
1

1− z(1−zm)
1−z

=
1− z

1− 2z + zm+1
.

Most combinatorial examples involving counting words with
certain patterns fall into this class.
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General results

Algebraic GFs

The counting GF of an unambiguous context-free language is
algebraic (Chomsky-Schutzenberger). Thus combinatorial
classes constructed recursively (such as trees) using only
disjoint union, cartesian product, and sequence have algebraic
GFs.

Example: binary trees have T (z) = 1 + zT (z)2 as above.

Another example: general ordered trees have
< tree >=< node > ×sequence(< tree >) which can be
rewritten

T = {node} × S
S = {ε} × S × T

so that T (z) = zS(z), S(z) = 1 + S(z)T (z). This polynomial
system is reduced by algebraic elimination (resultants or
Gröbner bases) to obtain T (z)2 − T (z) + z = 0.
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General results

Software

The MAPLE package gfun by Bruno Salvy, Paul Zimmermann
and Eithne Murray can guess a GF from the first few terms of
the sequence, find the least order ODE for an algebraic GF,
convert from holonomic equation to recurrence, etc.

Holonomic GFs can be manipulated nicely with algorithms
based on Gröbner basis computations in Ore algebras.
Implemented in MAPLE by F. Chyzak.

The MAPLE package combstruct automates many symbolic
method computations for combinatorial classes.
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Similarities and differences when d > 1

Given a multivariate sequence f : Nd → C, the GF
F (z) =

∑
n∈Nd f(n)zn, where zn = zn1

1 zn2
2 . . . znd

d can be
defined analogously.

The basic algebra rules work as before.

The symbolic method works as before; size is now a function
into Cd.

The link between recurrences and functional equations is more
complicated. A linear recurrence an =

∑
csan−s with

constant coefficients may not yield a rational, algebraic, or
even D-finite GF in 2 or more variables.
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Recurrences and functional equations

Strange behaviour in higher dimensions

A linear recurrence with constant coefficients in d ≥ 2
variables can yield a nasty GF even with nice boundary
conditions. The recurrence may be “forward” in some
dimensions but “forward” in others.

Example: knight’s walk. Consider paths starting at (1, 1) with
jumps in {(2,−1), (−1, 2)}, staying in the first quadrant.
Bousquet-Mélou and Petkovšek showed that the GF counting
these is not holonomic.

A linear recurrence with polynomial coefficients corresponds
to a linear PDE. Existence and uniqueness theorems are much
weaker than for ODEs.

First order linear PDEs can be solved by the method of
characteristics. While OK in theory, it is often hard to do in
practice.
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The kernel method

Results from the kernel method

(Partially) systematized by Bousquet-Mélou and Petkovšek
(2000), based on difficult work by Fayolle, Iasnogorodski,
Malyshev.

A linear recurrence an =
∑

s∈E csan−s is given for n ≥ q. If
E lies on one side of a hyperplane, there is a unique solution.

The apex of the recurrence is the coordinatewise minimum of
the set E ∪ {0}.
B-M & P: if the apex has all coordinates nonnegative, then F
is rational iff K is. If the apex has only one coordinate
negative, then F is algebraic iff K is.

The apex of the knight’s walk has 2 negative coordinates and
non-holonomic GF.
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The kernel method

Kernel method example

Dyck paths are enumerated by

amn = am−1,n−1 + am−1,n+1; a0,m = 0, an,0 = 0, a00 = 1.

Let F (x, y) =
∑

m≥1,n≥1 amnxm−1yn−1. The recurrence
yields F = (K − U)/Q with

Q(x, y) = y−x−xy2, K(x, y) = y, U(x) =
∑
m≥1

am1x
m.

K is known (GF of boundary conditions) and U is determined
by the recurrence but unknown in closed form. One equation,
two unknowns!
On the curve Q = 0, we have y = ξ(x), so U(x) = ξ(x)
there, hence everywhere by analyticity.
In fact we have by division

F (x, y) =
ξ(x)

1− ξ(x)y
.
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The kernel method

Trickier problems

The kernel method with apex having a single negative
coordinate is easy enough when this coordinate is −1. All
examples I have found in the literature satisfy this. What
happens in general?

Example: knight’s walk with (2, 1), (2,−1), (1,−2), (1, 2) as
allowed steps. By BM& P, GF is algebraic.

Here Q = xy4 + x2y3 + y2x2y + x. The branches of y near
the origin must be analysed by means of Puiseux (fractional)
series, Newton polygon methods, etc. An explicit useful form
can be computed with substantial effort.
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Method of characteristics

OK Corral example

A model for the famous gunfight. A complete bipartite graph
is given. At each time step one node is chosen at random and
an edge adjacent to it. The node on the other side is deleted.
Ends when one part of bipartition is eliminated.

Recurrence for expected number of survivors is

amn =
m

m + n
am,n−1 +

n

m + n
am,n−1 a0,n = n, am,0 = m

which is equivalent to the PDE

[x∂/∂x + y∂/∂y]

(
F (x, y)− x

(1− x)2
− y

(1− y)2

)
= 0.

Such PDEs can be solved via the method of characteristics
which reduces it to integrating 1-variable ODEs.


	Outline
	Generating functions
	Computation of univariate GFs
	The symbolic method
	General results

	Computation of multivariate GFs
	Recurrences and functional equations
	The kernel method
	Method of characteristics


