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Exact methods

Table lookup

Applying the basic operations (+, ·, d/dz,
∫
. . . ) to known

series such as (1− z)−1 =
∑

n≥0 z
n yields a table of known

results.
Linear combinations of these can often be used for simple
problems to obtain the desired result (we do this a lot in
COMPSCI 720).
Standard example: GF for average number of comparisons of
quicksort on size n permutation is

F (z) =
2

(1− z)2

(
log

1

1− z
− z

)
.

Thus by lookup we have an = 2(n+ 1)Hn − 4n,
Hn :=

∑n
j=1 1/j.

Problems: table may be incomplete; decomposition of GF may
be unclear; exact formulae are often too complicated to be
useful anyway.
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Exact methods

Implicit functions: Lagrange inversion

A functional equation of the form f(z) = zφ(f(z)) has a
unique solution provided φ′(0) 6= 0. In this case we have

[zn]ψ(f(z)) = [yn]yψ′(y)φ(y)n = [xnyn]
yψ′(y)

1− xφ(y)
.

Easy proofs all use the Cauchy integral formula. Formal power
series proofs exist but are not very natural.

In particular φ is an automorphism of C[[z]] and, with
v = φ(z), ψ(z) = zk,

n[zn]vk = k[v−k]z−n.

Example: degree-restricted trees.
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Exact methods

Degree-restricted trees example

Let 0 ∈ Ω ⊆ N. We consider the combinatorial class TΩ of
ordered plane trees with the outdegree of each node restricted
to belong to Ω.

Examples: Ω = {0, 1} gives paths; Ω = {0, 2} gives binary
trees; Ω = {0, t} gives t-ary trees; Ω = N gives general
ordered trees.

Let TΩ(z) be the enumerating GF of this class. The symbolic
method immediately gives the equation

TΩ(z) = zφ(TΩ(z))

where φ(x) =
∑

ω∈Ω x
ω.

Lagrange inversion is tailor-made for this situation. For Ω as
above, we obtain an answer involving binomial coefficients.
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Asymptotic methods

Basic complex-analytic method

(Cauchy integral formula) Let D be the open disc of
convergence, Γ its boundary, U a simply connected set
containing D. Then

an =
1

2πi

∫
C
z−n−1F (z) dz

where C is a simple closed curve in U .
Usually (if all an ≥ 0 and (an) is not periodic), there is a
unique singularity ρ of smallest modulus on Γ, and ρ is
positive real. WLOG ρ = 1.
Further progress depends on singularities of F . In one variable,
not many types are possible, and there are methods for each.

If ρ is large (essential), use the saddle point method.
If ρ is a pole or algebraic/logarithmic and F can be continued
past Γ, use singularity analysis.
If Γ is a natural boundary, use Darboux’ method or circle
method or . . . .
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Asymptotic methods

“Singularity analysis” (Flajolet-Odlyzko 1990)

Assume F is analytic in a Camembert region.

Choose an appropriate (“Hankel”) contour approaching the
singularity at distance 1/n.

This yields asymptotics for [zn]F (z) where F looks like
(1− z)α(log 1/(1− z))β. “Looks like” means o,O,Θ.

Asymptotics for F (z) near z = 1 yields asymptotics for
[zn]F (z) automatically. Very useful: singularities in
applications are mostly poles, logarithmic, or square-root.

If ρ is a pole then a simpler contour can be used, along with
Cauchy residue theorem.
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Asymptotic methods

Darboux’ method

Assume F is of class Ck on Γ. Change variable z = exp(iθ),
integrate by parts k times. Get

an =
1

2π(in)k

∫ 2π

0
f (k)(eiθ)e−inθ.

Analyze the oscillating integral using Fourier techniques
(Riemann-Lebesgue lemma).

Can’t be used for poles or if f has infinitely many singularities
on Γ. In that case, sometimes the circle method of analytic
number theory works.
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Asymptotic methods

Saddle point method

Used for “large” (essential) singularities (for example, entire
function at ∞). Example: Stirling’s formula.

Cauchy integral formula on a circle CR of radius R gives
an ≤ (2π)−1f(R)/Rn.

Choosing R = n minimizes this upper bound. We find that
the integral over CR has most mass near z = n, so that

an =
1

2πnn

∫ 2π

0
exp(−inθ + log f(neiθ) dθ

≈ 1

2πnn

∫ 2π

0
exp(−nθ2/2) dθ.

Now Laplace’s method gives asymptotics of the Laplace-like
integral.
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Some references for this section

Univariate GF asymptotics — Flajolet and Sedgewick,
Analytic Combinatorics (book in progress, algo.inria.fr)

Pemantle-Wilson mvGF project
www.cs.auckland.ac.nz/~mcw/Research/mvGF

M. Wilson, Asymptotics of generalized Riordan arrays, to
appear in DMTCS;

R. Pemantle and M. Wilson, Twenty combinatorial examples
of asymptotics derived from multivariate generating functions,
submitted to SIAM Review.

Above two appers are CDMTCS reports and also available
from my webpage.
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Multivariate coefficient extraction — some quotations

(E. Bender, SIAM Review 1974) Practically nothing is known
about asymptotics for recursions in two variables even when a
GF is available. Techniques for obtaining asymptotics from
bivariate GFs would be quite useful.

(A. Odlyzko, Handbook of Combinatorics, 1995) A major
difficulty in estimating the coefficients of mvGFs is that the
geometry of the problem is far more difficult. . . . Even rational
multivariate functions are not easy to deal with.

(P. Flajolet/R. Sedgewick, Analytic Combinatorics Ch 9 draft,
2005) Roughly, we regard here a bivariate GF as a collection
of univariate GFs . . . .
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Our project

Robin Pemantle (U. Penn.) and I have a major project on
mvGF coefficient extraction.

Thoroughly investigate coefficient extraction for meromorphic
F (z) := F (z1, . . . , zd+1) (pole singularities). Amazingly little
is known even about rational F in 2 variables.

Goal 1: improve over all previous work in generality, ease of
use, symmetry, computational effectiveness, uniformity of
asymptotics. Create a theory!

Goal 2: establish mvGFs as an area worth studying in its own
right, a meeting place for many different areas, a common
language. I am recruiting!
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Notation and basic taxonomy

F (z) =
∑
arzr = G(z)/H(z) meromorphic in nontrivial

polydisc in Cd.

V = {z|H(z) = 0} the singular variety of F .

T(z),D(z) the torus, polydisc centred at 0 and containing z.

A point of V is strictly minimal (with respect to the usual
partial order on moduli of coordinates) if V ∩ D(z) = {z}.
When F ≥ 0, such points lie in the positive real orthant.

A minimal point can be a smooth (manifold), multiple (locally
product of n smooth factors Hi) or bad (all other types),
depending on local geometry of V.

For smooth point, dir(z) is direction of (z1H1, . . . , zdHd)
(gradient of H in log-coordinates). Always positive if z
minimal.
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Brief outline of methods

Use Cauchy integral formula in Cd; contour changes
(homology/residue theory); convert to Fourier-Laplace
integral in remaining d variables; stationary phase analysis of
these integrals.

Must specify a direction r = r/|r| for asymptotics.

To each minimal point z ∈ V we associate a cone K(z) of
directions. If z is smooth, K is a single ray represented by
dir(z); if z is multiple, K is nonempty, spanned by K’s of
smooth factors.

If r is bounded away from K(z), then |zrar| decreases
exponentially. We show that if r is in K(z), then z−r is the
right asymptotic order, and develop full asymptotic
expansions, on a case-by-case basis.
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Outline of results

Asymptotics in the direction r are determined by the
geometry of V near a finite set, crit(r), of critical points.

For computing asymptotics in direction r, we may restrict to a
subset contrib(r) ⊆ crit(r) of contributing points.

We can determine crit and contrib by a combination of
algebraic and geometric criteria.

For each z ∈ contrib, there is an asymptotic expansion
formula(z) for ar, computable in terms of the derivatives of G
and H at z.

This yields

ar ∼
∑

z∈contrib

formula(z) (1)

where formula(z) depends on the type of critical point.



Outline Coefficient extraction from univariate GFs Coefficient extraction from multivariate GFs Combinatorial examples Analytic details Comments

Outline of results

Asymptotics in the direction r are determined by the
geometry of V near a finite set, crit(r), of critical points.

For computing asymptotics in direction r, we may restrict to a
subset contrib(r) ⊆ crit(r) of contributing points.

We can determine crit and contrib by a combination of
algebraic and geometric criteria.

For each z ∈ contrib, there is an asymptotic expansion
formula(z) for ar, computable in terms of the derivatives of G
and H at z.

This yields

ar ∼
∑

z∈contrib

formula(z) (1)

where formula(z) depends on the type of critical point.



Outline Coefficient extraction from univariate GFs Coefficient extraction from multivariate GFs Combinatorial examples Analytic details Comments

Outline of results

Asymptotics in the direction r are determined by the
geometry of V near a finite set, crit(r), of critical points.

For computing asymptotics in direction r, we may restrict to a
subset contrib(r) ⊆ crit(r) of contributing points.

We can determine crit and contrib by a combination of
algebraic and geometric criteria.

For each z ∈ contrib, there is an asymptotic expansion
formula(z) for ar, computable in terms of the derivatives of G
and H at z.

This yields

ar ∼
∑

z∈contrib

formula(z) (1)

where formula(z) depends on the type of critical point.



Outline Coefficient extraction from univariate GFs Coefficient extraction from multivariate GFs Combinatorial examples Analytic details Comments

Outline of results

Asymptotics in the direction r are determined by the
geometry of V near a finite set, crit(r), of critical points.

For computing asymptotics in direction r, we may restrict to a
subset contrib(r) ⊆ crit(r) of contributing points.

We can determine crit and contrib by a combination of
algebraic and geometric criteria.

For each z ∈ contrib, there is an asymptotic expansion
formula(z) for ar, computable in terms of the derivatives of G
and H at z.

This yields

ar ∼
∑

z∈contrib

formula(z) (1)

where formula(z) depends on the type of critical point.



Outline Coefficient extraction from univariate GFs Coefficient extraction from multivariate GFs Combinatorial examples Analytic details Comments

Outline of results

Asymptotics in the direction r are determined by the
geometry of V near a finite set, crit(r), of critical points.

For computing asymptotics in direction r, we may restrict to a
subset contrib(r) ⊆ crit(r) of contributing points.

We can determine crit and contrib by a combination of
algebraic and geometric criteria.

For each z ∈ contrib, there is an asymptotic expansion
formula(z) for ar, computable in terms of the derivatives of G
and H at z.

This yields

ar ∼
∑

z∈contrib

formula(z) (1)

where formula(z) depends on the type of critical point.



Outline Coefficient extraction from univariate GFs Coefficient extraction from multivariate GFs Combinatorial examples Analytic details Comments

Generic shape of leading term of formula(z)

(smooth/multiple point n < d)

C(z)G(z)z−r|r|−(d−n)/2

where C depends on the derivatives to order 2 of H;

(multiple point, n = d)

(det J)−1G(z)z−r

where J is the Jacobian matrix (∂Hi/∂zj);

(multiple point, n > d)

G(z)z−rP

(
r1
z1
, . . . ,

rd
zd

)
,

P a piecewise polynomial of degree n− d;

(bad point) Not yet done, hence the name.
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Specialization to dimension 2 — smooth points

Suppose that H has a simple pole at P = (z, w) and is
otherwise analytic in D(z, w). Define

Q(z, w) = −A2B −AB2 −A2z2Hzz −B2w2Hww +ABHzw

where A = wHw, B = zHz, all computed at P . Then when
r/s = B/A,

ars ∼
G(z, w)√

2π

√
−A

sQ(z, w)
.

The apparent lack of symmetry is illusory, since A/s = B/r.
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Specialization to dimension 2 — multiple points

Suppose that H has an isolated double pole at (z, w) but is
otherwise analytic in D(z, w).

Let hess denote the Hessian of H. Then for each compact
subset K of the interior of K(z, w), there is c > 0 such that

ars =

(
G(z, w)√

−z2w2 det hess(z, w)
+O(e−c)

)
uniformly for (r, s) ∈ K.

The uniformity breaks down near the walls of K, but we know
the expansion on the boundary.
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The combinatorial case

In the combinatorial case (ar ≥ 0 for all r), several nice results
hold that are not generally true.

For each r of interest, there is always a unique element z(r)
of contrib(r) lying in the positive orthant Od. All others lie on
the same torus, and generically there are no others.

z(r) is precisely the element of crit(r) that is also a minimal
point of V.

Thus we essentially only need to solve H(z) = 0, r ∈ K(z),
classify local geometry, and check for minimality.

All steps but the last are straightforward polynomial algebra
for rational F ; the last is harder but usually doable.

We can now use formula(z) to compute asymptotics in
direction r. Provided the geometry does not change, the
above expansion is locally uniform in r.
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Concrete example: Delannoy numbers

Consider walks in Z2 from (0, 0), steps in (1, 0), (0, 1), (1, 1).
Here F (x, y) = (1− x− y − xy)−1.

Note V is globally smooth so we only need to solve
1− x− y − xy = 0, x(1 + y)s = y(1 + x)r. There is a unique
solution.

Using these relations we obtain x, y in terms of r, s, then use
smooth formula to give

ars ∼
[
∆− s

r

]−r [∆− r

s

]−s√ rs

2π∆(r + s−∆)2
.

where ∆ =
√
r2 + s2.

Extracting the diagonal (“central Delannoy numbers”) is now
easy:

arr ∼ (3 + 2
√

2)r 1

4
√

2(3− 2
√

2)
r−1/2.
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Riordan arrays

A Riordan array is a triangular array ank with GF of the form

F (x, y) =
∑
n,k

ankx
nyk =

φ(x)

1− yv(x)
,

v(0) = 0 6= v′(0), φ(0) 6= 0.

Equivalently ank = [xn]φ(x)v(x)k.

Closely linked with Lagrange inversion: v(x) = xA(v(x)) for
some unique A. Lots of interesting identities.

Examples: number triangles (Pascal, Catalan, Motzkin,
Schröder, . . . ); various 2-D lattice walks, generalized Dyck
paths; ordered forests; many sequence enumeration problems;
sums of IID random variables; Lagrange inversion; kernel
method.



Outline Coefficient extraction from univariate GFs Coefficient extraction from multivariate GFs Combinatorial examples Analytic details Comments

Riordan arrays

A Riordan array is a triangular array ank with GF of the form

F (x, y) =
∑
n,k

ankx
nyk =

φ(x)

1− yv(x)
,

v(0) = 0 6= v′(0), φ(0) 6= 0.

Equivalently ank = [xn]φ(x)v(x)k.

Closely linked with Lagrange inversion: v(x) = xA(v(x)) for
some unique A. Lots of interesting identities.

Examples: number triangles (Pascal, Catalan, Motzkin,
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Basic theorem on Riordan array asymptotics

Let (v, φ) determine a Riordan array. Generically (v has radius of
convergence R > 0, v ≥ 0, v not periodic, φ has radius of
convergence at least R), we have

ars ∼ v(y)ry−sr−1/2
∞∑

k=0

bk(s/r)r
−k (2)

where y is the unique positive real solution to µ(v; y) = s/r.

Here b0 = φ(y)√
2πσ2(v;y)

6= 0.

The asymptotic approximation is uniform for s/r in a compact
subset of (A,B), where A is the order of v at 0 and B its
order at infinity. We suspect it is usually uniform even on
[A,B).
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Multiple point example — Cayley graph diameters

(J. Siran et al. 2004) Fix t disjoint pairs from
[n] := {1, . . . , n}. Now choose S ⊆ n, |S| = k, uniformly at
random. What is prob(no pair belongs to S)?

Relevant GF turns out to be

F (x, y, z) =
∑

a(n, k, t)xnykzt

=
(
1− z(1− x2y2)

)−1
(1− x(1 + y))−1 .

Here a(n, k, t) can be negative for large t, so we are not in the
combinatorial case. But crit has two elements, both multiple
points with n = 2, d = 3. One point can be eliminated from
contrib since it leads to negative asymptotics for a positive
sequence. Answer is asymptotic to

C

(
n

k

)−1

x−ky−nz−tn−1/2

where x, y, z are quadratic over Z[r, s].
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Fourier-Laplace integrals

We are quickly led via z = eiθ to large-λ analysis of integrals of
the form

I(λ) =

∫
D
e−λf(x)ψ(x) dV (x)

where:

f(0) = 0, f ′(0) = 0 iff r ∈ K(z).

Re f ≥ 0; the phase f is analytic, the amplitude ψ ∈ C∞.

D is an (n+ d)-dimensional product of real tori, intervals and
simplices; dV the volume element.

Difficulties in analysis: interplay between exponential and
oscillatory decay, nonsmooth boundary of simplex.



Outline Coefficient extraction from univariate GFs Coefficient extraction from multivariate GFs Combinatorial examples Analytic details Comments

Low-dimensional examples of F-L integrals

Typical smooth point example looks like∫ 1

−1
e−λ(1+i)x2

dx.

Isolated nondegenerate critical point, exponential decay

Simplest double point example looks roughly like∫ 1

−1

∫ 1

0
e−λ(x2+2ixy) dy dx.

Note Re f = 0 on x = 0 so rely on oscillation for smallness.

Multiple point with n = 2, d = 1 gives integral like∫ 1

−1

∫ 1

0

∫ x

−x
e−λ(z2+2izy) dy dx dz.

Simplex corners now intrude, continuum of critical points.



Outline Coefficient extraction from univariate GFs Coefficient extraction from multivariate GFs Combinatorial examples Analytic details Comments

Sample reduction to F-L in simple case

Suppose (1, 1) is a smooth or multiple strictly minimal point. Here
Ca is the circle of radius a centred at 0, R(z; s; ε) = residue sum
in annulus, N a nbhd of 1.

ars = (2πi)−2

∫
C1

z−r−1

∫
C1−ε

w−s−1F (z, w) dw dz

= (2πi)−2

∫
N
z−r−1

[∫
C1+ε

w−s−1F (z, w)− 2πiR(z; s; ε)

]
dz

∼= −(2πi)−1

∫
N
z−r−1R(z; s; ε) dz

= (2π)−1

∫
N

exp(−irθ + log(−R(z; s; ε)) dθ.

To proceed we need a formula for the residue sum.
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Dealing with the residues

In smooth case
R(z; ε) = v(z)s Res(F/w)|w=1/v(z) := v(z)sφ(z). So above
has the form

(2π)−1

∫
N

exp(−s(irθ/s− log v(z)− log(−φ(z)) dθ.

In multiple case there are n+ 1 poles in the ε-annulus and we
use the following nice lemma:
Let h : C → C and let µ be the normalized volume measure
on Sn. Then

n∑
j=0

h(vj)∏
r 6=j(vj − vr)

=

∫
Sn

h(n)(αv) dµ(α).
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Comparing approaches for small singularities

(GF-sequence methods) Treat F (z1, . . . , zd) as a sequence of
d− 1 dimensional GFs, use probability limit theorems. Pro:
can use 1-D methods. Con: complete expansions hard to get,
only works well for smooth singularities (below).

(diagonal method) For each rational slope p/q, consider
singularities of f(t) := F (zq, t/zp). Pro: gives complete GF
for each diagonal using 1-D methods. Con: only works in
dimension 2; complexity of computation depends on slope;
only rational slopes, so uniform asymptotics impossible.

(genuinely multivariate methods) Try to use Cauchy residue
approach, then convert to Fourier-Laplace integrals. Pro:
uniform asymptotics, complete expansions, general approach.
Con: geometry of singular set is hard.
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Open problems

Complete analysis of F-L integrals in general case (large
stationary phase set).

How to find and classify minimal singularities algorithmically?
Note: a minimal point is a Pareto optimum of the functions
|z1|, . . . , |zd+1|.
Computer algebra of multivariate asymptotic expansions.

Patching together asymptotics at cone boundaries; uniformity,
phase transitions.

Compute expansions controlled by bad points.
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