Coefficient Extraction From Multivariate Generating Functions

Mark C. Wilson

May 10, 2005

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

1 Coefficient extraction from univariate GFs

- Exact methods
- Asymptotic methods

2 Coefficient extraction from multivariate GFs

- 3 Combinatorial examples
- Analytic details

Outline Coefficient extraction from univariate GFs Coefficient extraction from multivariate GFs Combinatorial examples Analytic •000000

Exact methods

Table lookup

- Applying the basic operations $(+, \cdot, d/dz, \int ...)$ to known series such as $(1-z)^{-1} = \sum_{n \ge 0} z^n$ yields a table of known results.
- Linear combinations of these can often be used for simple problems to obtain the desired result (we do this a lot in COMPSCI 720).
- Standard example: GF for average number of comparisons of quicksort on size *n* permutation is

$$F(z) = rac{2}{(1-z)^2} \left(\log rac{1}{1-z} - z
ight).$$

Thus by lookup we have $a_n = 2(n+1)H_n - 4n$, $H_n := \sum_{j=1}^n 1/j$.

 Problems: table may be incomplete; decomposition of GF may be unclear; exact formulae are often too complicated to be useful anyway.

Outline Coefficient extraction from univariate GFs Coefficient extraction from multivariate GFs Combinatorial examples Analytic ○●○○○○○

Exact methods

Implicit functions: Lagrange inversion

 A functional equation of the form f(z) = zφ(f(z)) has a unique solution provided φ'(0) ≠ 0. In this case we have

$$[z^{n}]\psi(f(z)) = [y^{n}]y\psi'(y)\phi(y)^{n} = [x^{n}y^{n}]\frac{y\psi'(y)}{1 - x\phi(y)}.$$

Easy proofs all use the Cauchy integral formula. Formal power series proofs exist but are not very natural.

• In particular ϕ is an automorphism of $\mathbb{C}[[z]]$ and, with $v = \phi(z), \ \psi(z) = z^k$,

$$n[z^n]v^k = k[v^{-k}]z^{-n}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Example: degree-restricted trees.

Outline Coefficient extraction from univariate GFs Coefficient extraction from multivariate GFs Combinatorial examples Analytic 000000

Exact methods

Degree-restricted trees example

- Let 0 ∈ Ω ⊆ N. We consider the combinatorial class T_Ω of ordered plane trees with the outdegree of each node restricted to belong to Ω.
- Examples: $\Omega = \{0, 1\}$ gives paths; $\Omega = \{0, 2\}$ gives binary trees; $\Omega = \{0, t\}$ gives *t*-ary trees; $\Omega = \mathbb{N}$ gives general ordered trees.
- Let $T_{\Omega}(z)$ be the enumerating GF of this class. The symbolic method immediately gives the equation

$$T_{\Omega}(z) = z\phi(T_{\Omega}(z))$$

where $\phi(x) = \sum_{\omega \in \Omega} x^{\omega}$.

• Lagrange inversion is tailor-made for this situation. For Ω as above, we obtain an answer involving binomial coefficients.

Asymptotic methods

Basic complex-analytic method

 (Cauchy integral formula) Let D be the open disc of convergence, Γ its boundary, U a simply connected set containing D. Then

$$a_n = \frac{1}{2\pi i} \int_C z^{-n-1} F(z) \, dz$$

where C is a simple closed curve in U.

- Usually (if all a_n ≥ 0 and (a_n) is not periodic), there is a unique singularity ρ of smallest modulus on Γ, and ρ is positive real. WLOG ρ = 1.
- Further progress depends on singularities of *F*. In one variable, not many types are possible, and there are methods for each.
 - If ρ is large (essential), use the saddle point method.
 - If ρ is a pole or algebraic/logarithmic and F can be continued past $\Gamma,$ use singularity analysis.
 - If Γ is a natural boundary, use Darboux' method or circle method or

Asymptotic methods

"Singularity analysis" (Flajolet-Odlyzko 1990)

- Assume F is analytic in a Camembert region.
- Choose an appropriate ("Hankel") contour approaching the singularity at distance 1/n.
- This yields asymptotics for $[z^n]F(z)$ where F looks like $(1-z)^{\alpha}(\log 1/(1-z))^{\beta}$. "Looks like" means o, O, Θ .
- Asymptotics for F(z) near z = 1 yields asymptotics for $[z^n]F(z)$ automatically. Very useful: singularities in applications are mostly poles, logarithmic, or square-root.
- If ρ is a pole then a simpler contour can be used, along with Cauchy residue theorem.

Asymptotic methods

Darboux' method

 Assume F is of class C^k on Γ. Change variable z = exp(iθ), integrate by parts k times. Get

$$a_n = \frac{1}{2\pi (in)^k} \int_0^{2\pi} f^{(k)}(e^{i\theta}) e^{-in\theta}$$

- Analyze the oscillating integral using Fourier techniques (Riemann-Lebesgue lemma).
- Can't be used for poles or if f has infinitely many singularities on Γ. In that case, sometimes the circle method of analytic number theory works.

Asymptotic methods

Saddle point method

- Used for "large" (essential) singularities (for example, entire function at ∞). Example: Stirling's formula.
- Cauchy integral formula on a circle C_R of radius R gives $a_n \leq (2\pi)^{-1} f(R)/R^n$.
- Choosing R = n minimizes this upper bound. We find that the integral over C_R has most mass near z = n, so that

$$a_n = rac{1}{2\pi n^n} \int_0^{2\pi} \exp(-in heta + \log f(ne^{i heta}) \, d heta) \ pprox rac{1}{2\pi n^n} \int_0^{2\pi} \exp(-n heta^2/2) \, d heta.$$

Now Laplace's method gives asymptotics of the Laplace-like integral.

Some references for this section

- Univariate GF asymptotics Flajolet and Sedgewick, Analytic Combinatorics (book in progress, algo.inria.fr)
- Pemantle-Wilson mvGF project
 www.cs.auckland.ac.nz/~mcw/Research/mvGF
- M. Wilson, Asymptotics of generalized Riordan arrays, to appear in DMTCS;
- R. Pemantle and M. Wilson, Twenty combinatorial examples of asymptotics derived from multivariate generating functions, submitted to SIAM Review.
- Above two appers are CDMTCS reports and also available from my webpage.

Multivariate coefficient extraction — some quotations

• (E. Bender, SIAM Review 1974) Practically nothing is known about asymptotics for recursions in two variables even when a GF is available. Techniques for obtaining asymptotics from bivariate GFs would be quite useful.

Multivariate coefficient extraction — some quotations

- (E. Bender, SIAM Review 1974) Practically nothing is known about asymptotics for recursions in two variables even when a GF is available. Techniques for obtaining asymptotics from bivariate GFs would be quite useful.
- (A. Odlyzko, Handbook of Combinatorics, 1995) A major difficulty in estimating the coefficients of mvGFs is that the geometry of the problem is far more difficult. ... Even rational multivariate functions are not easy to deal with.

Multivariate coefficient extraction — some quotations

- (E. Bender, SIAM Review 1974) Practically nothing is known about asymptotics for recursions in two variables even when a GF is available. Techniques for obtaining asymptotics from bivariate GFs would be quite useful.
- (A. Odlyzko, Handbook of Combinatorics, 1995) A major difficulty in estimating the coefficients of mvGFs is that the geometry of the problem is far more difficult. ... Even rational multivariate functions are not easy to deal with.
- (P. Flajolet/R. Sedgewick, Analytic Combinatorics Ch 9 draft, 2005) Roughly, we regard here a bivariate GF as a collection of univariate GFs

Our project

- Robin Pemantle (U. Penn.) and I have a major project on mvGF coefficient extraction.
- Thoroughly investigate coefficient extraction for meromorphic $F(\mathbf{z}) := F(z_1, \ldots, z_{d+1})$ (pole singularities). Amazingly little is known even about rational F in 2 variables.
- Goal 1: improve over all previous work in generality, ease of use, symmetry, computational effectiveness, uniformity of asymptotics. Create a theory!
- Goal 2: establish mvGFs as an area worth studying in its own right, a meeting place for many different areas, a common language. I am recruiting!

Notation and basic taxonomy

- F(z) = ∑ a_rz^r = G(z)/H(z) meromorphic in nontrivial polydisc in C^d.
- $\mathcal{V} = \{\mathbf{z} | H(\mathbf{z}) = 0\}$ the singular variety of F.
- $\bullet~\mathsf{T}(\mathbf{z}),\mathsf{D}(\mathbf{z})$ the torus, polydisc centred at $\boldsymbol{0}$ and containing $\mathbf{z}.$
- A point of V is strictly minimal (with respect to the usual partial order on moduli of coordinates) if V ∩ D(z) = {z}. When F ≥ 0, such points lie in the positive real orthant.
- A minimal point can be a smooth (manifold), multiple (locally product of *n* smooth factors *H_i*) or bad (all other types), depending on local geometry of *V*.
- For smooth point, dir(z) is direction of (z₁H₁,..., z_dH_d) (gradient of H in log-coordinates). Always positive if z minimal.

Brief outline of methods

- Use Cauchy integral formula in \mathbb{C}^d ; contour changes (homology/residue theory); convert to Fourier-Laplace integral in remaining d variables; stationary phase analysis of these integrals.
- Must specify a direction $\overline{\mathbf{r}} = \mathbf{r}/|\mathbf{r}|$ for asymptotics.
- To each minimal point z ∈ V we associate a cone K(z) of directions. If z is smooth, K is a single ray represented by dir(z); if z is multiple, K is nonempty, spanned by K's of smooth factors.
- If r
 is bounded away from K(z), then |z^ra_r| decreases exponentially. We show that if r
 is in K(z), then z^{-r} is the right asymptotic order, and develop full asymptotic expansions, on a case-by-case basis.

Outline of results

 Asymptotics in the direction r
 are determined by the geometry of V near a finite set, crit(r
), of critical points.

Outline of results

- Asymptotics in the direction r
 are determined by the geometry of V near a finite set, crit(r
), of critical points.

Outline of results

- Asymptotics in the direction r
 are determined by the geometry of V near a finite set, crit(r
), of critical points.

• We can determine crit and contrib by a combination of algebraic and geometric criteria.

Outline of results

- Asymptotics in the direction r
 are determined by the geometry of V near a finite set, crit(r
), of critical points.
- We can determine crit and contrib by a combination of algebraic and geometric criteria.
- For each z ∈ contrib, there is an asymptotic expansion formula(z) for a_r, computable in terms of the derivatives of G and H at z.

Outline of results

- Asymptotics in the direction r
 are determined by the geometry of V near a finite set, crit(r
), of critical points.
- We can determine crit and contrib by a combination of algebraic and geometric criteria.
- For each z ∈ contrib, there is an asymptotic expansion formula(z) for a_r, computable in terms of the derivatives of G and H at z.
- This yields

$$a_{\mathbf{r}} \sim \sum_{\mathbf{z} \in \text{contrib}} \text{formula}(\mathbf{z})$$
 (1)

where formula(\mathbf{z}) depends on the type of critical point.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Generic shape of leading term of formula(z)

• (smooth/multiple point n < d)

$$C(\mathbf{z})G(\mathbf{z})\mathbf{z}^{-\mathbf{r}}|\mathbf{r}|^{-(d-n)/2}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

where C depends on the derivatives to order 2 of H;

Generic shape of leading term of formula(z)

• (smooth/multiple point n < d)

$$C(\mathbf{z})G(\mathbf{z})\mathbf{z}^{-\mathbf{r}}|\mathbf{r}|^{-(d-n)/2}$$

where C depends on the derivatives to order 2 of H;

• (multiple point, n = d)

$$(\det J)^{-1}G(\mathbf{z})\mathbf{z}^{-\mathbf{r}}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where J is the Jacobian matrix $(\partial H_i/\partial z_j)$;

Generic shape of leading term of formula(z)

• (smooth/multiple point n < d)

$$C(\mathbf{z})G(\mathbf{z})\mathbf{z}^{-\mathbf{r}}|\mathbf{r}|^{-(d-n)/2}$$

where C depends on the derivatives to order 2 of H;

• (multiple point, n = d)

$$(\det J)^{-1}G(\mathbf{z})\mathbf{z}^{-\mathbf{r}}$$

where J is the Jacobian matrix $(\partial H_i/\partial z_j)$;

• (multiple point, n > d)

$$G(\mathbf{z})\mathbf{z}^{-\mathbf{r}}P\left(\frac{r_1}{z_1},\ldots,\frac{r_d}{z_d}\right),$$

P a piecewise polynomial of degree n - d;

Generic shape of leading term of formula(z)

• (smooth/multiple point n < d)

$$C(\mathbf{z})G(\mathbf{z})\mathbf{z}^{-\mathbf{r}}|\mathbf{r}|^{-(d-n)/2}$$

where C depends on the derivatives to order 2 of H;

• (multiple point, n = d)

$$(\det J)^{-1}G(\mathbf{z})\mathbf{z}^{-\mathbf{r}}$$

where J is the Jacobian matrix $(\partial H_i/\partial z_j)$;

• (multiple point, n > d)

$$G(\mathbf{z})\mathbf{z}^{-\mathbf{r}}P\left(\frac{r_1}{z_1},\ldots,\frac{r_d}{z_d}\right),$$

P a piecewise polynomial of degree n - d;

• (bad point) Not yet done, hence the name.

Specialization to dimension 2 — smooth points

• Suppose that H has a simple pole at P = (z, w) and is otherwise analytic in D(z, w). Define

$$Q(z,w) = -A^{2}B - AB^{2} - A^{2}z^{2}H_{zz} - B^{2}w^{2}H_{ww} + ABH_{zw}$$

where $A = wH_w, B = zH_z$, all computed at P. Then when r/s = B/A,

$$a_{rs} \sim \frac{G(z,w)}{\sqrt{2\pi}} \sqrt{\frac{-A}{sQ(z,w)}}.$$

The apparent lack of symmetry is illusory, since A/s = B/r.

Specialization to dimension 2 — multiple points

• Suppose that *H* has an isolated double pole at (z, w) but is otherwise analytic in D(z, w).

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Specialization to dimension 2 — multiple points

- Suppose that *H* has an isolated double pole at (z, w) but is otherwise analytic in D(z, w).
- Let hess denote the Hessian of H. Then for each compact subset K of the interior of K(z, w), there is c > 0 such that

$$a_{rs} = \left(\frac{G(z,w)}{\sqrt{-z^2w^2} \det \operatorname{hess}(z,w)} + O(e^{-c})\right) \text{ uniformly for } (r,s) \in K$$

うして ふぼう ふほう ふほう しょうくの

Specialization to dimension 2 — multiple points

- Suppose that *H* has an isolated double pole at (z, w) but is otherwise analytic in D(z, w).
- Let hess denote the Hessian of H. Then for each compact subset K of the interior of K(z, w), there is c > 0 such that

$$a_{rs} = \left(rac{G(z,w)}{\sqrt{-z^2 w^2 \det ext{hess}(z,w)}} + O(e^{-c})
ight)$$
 uniformly for $(r,s) \in K$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 The uniformity breaks down near the walls of K, but we know the expansion on the boundary.

In the combinatorial case ($a_r \ge 0$ for all r), several nice results hold that are not generally true.

For each r
 of interest, there is always a unique element z(r
 of contrib(r
) lying in the positive orthant O^d. All others lie on the same torus, and generically there are no others.

In the combinatorial case ($a_r \ge 0$ for all r), several nice results hold that are not generally true.

- For each r
 of interest, there is always a unique element z(r
 of contrib(r
) lying in the positive orthant O^d. All others lie on the same torus, and generically there are no others.
- $z(\overline{r})$ is precisely the element of $crit(\overline{r})$ that is also a minimal point of \mathcal{V} .

In the combinatorial case ($a_r \ge 0$ for all r), several nice results hold that are not generally true.

- For each r
 of interest, there is always a unique element z(r
 of contrib(r
) lying in the positive orthant O^d. All others lie on the same torus, and generically there are no others.
- $z(\overline{r})$ is precisely the element of crit (\overline{r}) that is also a minimal point of \mathcal{V} .
- Thus we essentially only need to solve $H(\mathbf{z}) = 0$, $\mathbf{\bar{r}} \in K(\mathbf{z})$, classify local geometry, and check for minimality.

In the combinatorial case ($a_r \ge 0$ for all r), several nice results hold that are not generally true.

- For each r
 f of interest, there is always a unique element z(r
) of contrib(r
) lying in the positive orthant O^d. All others lie on the same torus, and generically there are no others.
- $z(\overline{r})$ is precisely the element of $crit(\overline{r})$ that is also a minimal point of \mathcal{V} .
- Thus we essentially only need to solve $H(\mathbf{z}) = 0$, $\overline{\mathbf{r}} \in K(\mathbf{z})$, classify local geometry, and check for minimality.
- All steps but the last are straightforward polynomial algebra for rational *F*; the last is harder but usually doable.

In the combinatorial case ($a_r \ge 0$ for all r), several nice results hold that are not generally true.

- For each r
 of interest, there is always a unique element z(r
 of contrib(r
) lying in the positive orthant O^d. All others lie on the same torus, and generically there are no others.
- $z(\overline{r})$ is precisely the element of crit (\overline{r}) that is also a minimal point of \mathcal{V} .
- Thus we essentially only need to solve $H(\mathbf{z}) = 0$, $\overline{\mathbf{r}} \in K(\mathbf{z})$, classify local geometry, and check for minimality.
- All steps but the last are straightforward polynomial algebra for rational *F*; the last is harder but usually doable.
- We can now use formula(z) to compute asymptotics in direction $\bar{\mathbf{r}}$. Provided the geometry does not change, the above expansion is locally uniform in $\bar{\mathbf{r}}$.

Concrete example: Delannoy numbers

• Consider walks in \mathbb{Z}^2 from (0,0), steps in (1,0), (0,1), (1,1). Here $F(x,y) = (1 - x - y - xy)^{-1}$.

Concrete example: Delannoy numbers

- Consider walks in \mathbb{Z}^2 from (0,0), steps in (1,0), (0,1), (1,1). Here $F(x,y) = (1 - x - y - xy)^{-1}$.
- Note \mathcal{V} is globally smooth so we only need to solve 1 x y xy = 0, x(1 + y)s = y(1 + x)r. There is a unique solution.

Concrete example: Delannoy numbers

- Consider walks in \mathbb{Z}^2 from (0,0), steps in (1,0), (0,1), (1,1). Here $F(x,y) = (1 - x - y - xy)^{-1}$.
- Note \mathcal{V} is globally smooth so we only need to solve 1 x y xy = 0, x(1 + y)s = y(1 + x)r. There is a unique solution.
- Using these relations we obtain x, y in terms of r, s, then use smooth formula to give

$$a_{rs} \sim \left[\frac{\Delta - s}{r}\right]^{-r} \left[\frac{\Delta - r}{s}\right]^{-s} \sqrt{\frac{rs}{2\pi\Delta(r + s - \Delta)^2}}.$$

where $\Delta = \sqrt{r^2 + s^2}$.

Concrete example: Delannoy numbers

- Consider walks in \mathbb{Z}^2 from (0,0), steps in (1,0), (0,1), (1,1). Here $F(x, y) = (1 - x - y - xy)^{-1}$.
- Note \mathcal{V} is globally smooth so we only need to solve 1 - x - y - xy = 0, x(1 + y)s = y(1 + x)r. There is a unique solution.
- Using these relations we obtain x, y in terms of r, s, then use smooth formula to give

$$a_{rs} \sim \left[\frac{\Delta - s}{r}\right]^{-r} \left[\frac{\Delta - r}{s}\right]^{-s} \sqrt{\frac{rs}{2\pi\Delta(r + s - \Delta)^2}}.$$

where $\Delta = \sqrt{r^2 + s^2}$.

• Extracting the diagonal ("central Delannoy numbers") is now easy:

$$a_{rr} \sim (3 + 2\sqrt{2})^r \frac{1}{4\sqrt{2}(3 - 2\sqrt{2})} r^{-1/2}.$$

Riordan arrays

• A Riordan array is a triangular array a_{nk} with GF of the form

$$F(x,y) = \sum_{n,k} a_{nk} x^n y^k = \frac{\phi(x)}{1 - yv(x)},$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

$$v(0) = 0 \neq v'(0), \ \phi(0) \neq 0.$$

Riordan arrays

• A Riordan array is a triangular array a_{nk} with GF of the form

$$F(x,y) = \sum_{n,k} a_{nk} x^n y^k = \frac{\phi(x)}{1 - yv(x)},$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

$$v(0) = 0 \neq v'(0), \ \phi(0) \neq 0.$$

• Equivalently $a_{nk} = [x^n]\phi(x)v(x)^k$.

Riordan arrays

• A Riordan array is a triangular array a_{nk} with GF of the form

$$F(x,y) = \sum_{n,k} a_{nk} x^n y^k = \frac{\phi(x)}{1 - yv(x)},$$

$$v(0) = 0 \neq v'(0), \ \phi(0) \neq 0.$$

- Equivalently $a_{nk} = [x^n]\phi(x)v(x)^k$.
- Closely linked with Lagrange inversion: v(x) = xA(v(x)) for some unique A. Lots of interesting identities.

Riordan arrays

• A Riordan array is a triangular array a_{nk} with GF of the form

$$F(x,y) = \sum_{n,k} a_{nk} x^n y^k = \frac{\phi(x)}{1 - yv(x)},$$

 $v(0) = 0 \neq v'(0), \ \phi(0) \neq 0.$

- Equivalently $a_{nk} = [x^n]\phi(x)v(x)^k$.
- Closely linked with Lagrange inversion: v(x) = xA(v(x)) for some unique A. Lots of interesting identities.
- Examples: number triangles (Pascal, Catalan, Motzkin, Schröder, ...); various 2-D lattice walks, generalized Dyck paths; ordered forests; many sequence enumeration problems; sums of IID random variables; Lagrange inversion; kernel method.

Basic theorem on Riordan array asymptotics

Let (v, ϕ) determine a Riordan array. Generically $(v \text{ has radius of convergence } R > 0, v \ge 0, v \text{ not periodic, } \phi \text{ has radius of convergence at least } R)$, we have

$$a_{rs} \sim v(y)^r y^{-s} r^{-1/2} \sum_{k=0}^{\infty} b_k(s/r) r^{-k}$$
 (2)

where y is the unique positive real solution to $\mu(v; y) = s/r$.

• Here
$$b_0 = \frac{\phi(y)}{\sqrt{2\pi\sigma^2(v;y)}} \neq 0.$$

• The asymptotic approximation is uniform for s/r in a compact subset of (A, B), where A is the order of v at 0 and B its order at infinity. We suspect it is usually uniform even on [A, B).

Outline Coefficient extraction from univariate GFs Coefficient extraction from multivariate GFs Combinatorial examples Analytic 0000000

Multiple point example — Cayley graph diameters

(J. Siran et al. 2004) Fix t disjoint pairs from
 [n] := {1,...,n}. Now choose S ⊆ n, |S| = k, uniformly at random. What is prob(no pair belongs to S)?

Multiple point example — Cayley graph diameters

- (J. Siran et al. 2004) Fix t disjoint pairs from
 [n] := {1,...,n}. Now choose S ⊆ n, |S| = k, uniformly at random. What is prob(no pair belongs to S)?
- Relevant GF turns out to be

$$F(x, y, z) = \sum a(n, k, t) x^n y^k z^t$$

= $(1 - z(1 - x^2 y^2))^{-1} (1 - x(1 + y))^{-1}$

Multiple point example — Cayley graph diameters

- (J. Siran et al. 2004) Fix t disjoint pairs from
 [n] := {1,...,n}. Now choose S ⊆ n, |S| = k, uniformly at random. What is prob(no pair belongs to S)?
- Relevant GF turns out to be

$$F(x, y, z) = \sum a(n, k, t) x^n y^k z^t$$

= $(1 - z(1 - x^2 y^2))^{-1} (1 - x(1 + y))^{-1}$

Here a(n, k, t) can be negative for large t, so we are not in the combinatorial case. But crit has two elements, both multiple points with n = 2, d = 3. One point can be eliminated from contrib since it leads to negative asymptotics for a positive sequence. Answer is asymptotic to

$$C\binom{n}{k}^{-1}x^{-k}y^{-n}z^{-t}n^{-1/2}$$

where x, y, z are quadratic over $\mathbb{Z}[r, s]$.

Fourier-Laplace integrals

We are quickly led via $\mathbf{z}=e^{i\boldsymbol{\theta}}$ to large- λ analysis of integrals of the form

$$I(\lambda) = \int_D e^{-\lambda f(\mathbf{x})} \psi(\mathbf{x}) \, dV(\mathbf{x})$$

where:

- f(0) = 0, f'(0) = 0 iff $\bar{r} \in K(z)$.
- Re $f \ge 0$; the phase f is analytic, the amplitude $\psi \in C^{\infty}$.
- D is an (n + d)-dimensional product of real tori, intervals and simplices; dV the volume element.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Difficulties in analysis: interplay between exponential and oscillatory decay, nonsmooth boundary of simplex.

Low-dimensional examples of F-L integrals

• Typical smooth point example looks like

$$\int_{-1}^{1} e^{-\lambda(1+i)x^2} \, dx.$$

Isolated nondegenerate critical point, exponential decay

• Simplest double point example looks roughly like

J

$$\int_{-1}^{1} \int_{0}^{1} e^{-\lambda(x^2 + 2ixy)} \, dy \, dx.$$

Note $\operatorname{Re} f = 0$ on x = 0 so rely on oscillation for smallness.

• Multiple point with n = 2, d = 1 gives integral like

$$\int_{-1}^{1} \int_{0}^{1} \int_{-x}^{x} e^{-\lambda(z^{2}+2izy)} \, dy \, dx \, dz.$$

Simplex corners now intrude, continuum of critical points,

Sample reduction to F-L in simple case

Suppose (1,1) is a smooth or multiple strictly minimal point. Here C_a is the circle of radius a centred at 0, $R(z; s; \varepsilon) =$ residue sum in annulus, N a nbhd of 1.

$$\begin{aligned} a_{rs} &= (2\pi i)^{-2} \int_{C_1} z^{-r-1} \int_{C_{1-\varepsilon}} w^{-s-1} F(z,w) \, dw \, dz \\ &= (2\pi i)^{-2} \int_N z^{-r-1} \left[\int_{C_{1+\varepsilon}} w^{-s-1} F(z,w) - 2\pi i R(z;s;\varepsilon) \right] \, dz \\ &\cong -(2\pi i)^{-1} \int_N z^{-r-1} R(z;s;\varepsilon) \, dz \\ &= (2\pi)^{-1} \int_N \exp(-ir\theta + \log(-R(z;s;\varepsilon)) \, d\theta. \end{aligned}$$

To proceed we need a formula for the residue sum.

Dealing with the residues

In smooth case

 $R(z;\varepsilon)=v(z)^s\operatorname{Res}(F/w)_{|w=1/v(z)}:=v(z)^s\phi(z).$ So above has the form

$$(2\pi)^{-1} \int_N \exp(-s(ir\theta/s - \log v(z) - \log(-\phi(z))) d\theta.$$

In multiple case there are n + 1 poles in the ε-annulus and we use the following nice lemma:
 Let h : C → C and let μ be the normalized volume measure on S_n. Then

$$\sum_{j=0}^{n} \frac{h(v_j)}{\prod_{r\neq j} (v_j - v_r)} = \int_{\mathcal{S}_n} h^{(n)}(\boldsymbol{\alpha} \boldsymbol{v}) \, d\mu(\boldsymbol{\alpha}).$$

Comparing approaches for small singularities

- (GF-sequence methods) Treat F(z₁,..., z_d) as a sequence of d - 1 dimensional GFs, use probability limit theorems. Pro: can use 1-D methods. Con: complete expansions hard to get, only works well for smooth singularities (below).
- (diagonal method) For each rational slope p/q, consider singularities of f(t) := F(z^q, t/z^p). Pro: gives complete GF for each diagonal using 1-D methods. Con: only works in dimension 2; complexity of computation depends on slope; only rational slopes, so uniform asymptotics impossible.
- (genuinely multivariate methods) Try to use Cauchy residue approach, then convert to Fourier-Laplace integrals. Pro: uniform asymptotics, complete expansions, general approach. Con: geometry of singular set is hard.

Open problems

- Complete analysis of F-L integrals in general case (large stationary phase set).
- How to find and classify minimal singularities algorithmically? Note: a minimal point is a Pareto optimum of the functions |z₁|,..., |z_{d+1}|.
- Computer algebra of multivariate asymptotic expansions.
- Patching together asymptotics at cone boundaries; uniformity, phase transitions.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Compute expansions controlled by bad points.