
Embedding algebraic generating functions into
rational ones

Mark C. Wilson
UMass Amherst

AIM ACSV 2022



Embedding algebraic generating functions into rational ones

Advertisement

I Steve, Robin and I are writing the second edition of Analytic
Combinatorics in Several Variables.

I We aim to substantially increase uptake of ACSV by end users.

I Your feedback will be useful. Please give it!

I Your offer to help proofread in 2022 will also be greatly
appreciated.



Embedding algebraic generating functions into rational ones

Advertisement

I Steve, Robin and I are writing the second edition of Analytic
Combinatorics in Several Variables.

I We aim to substantially increase uptake of ACSV by end users.

I Your feedback will be useful. Please give it!

I Your offer to help proofread in 2022 will also be greatly
appreciated.



Embedding algebraic generating functions into rational ones

Advertisement

I Steve, Robin and I are writing the second edition of Analytic
Combinatorics in Several Variables.

I We aim to substantially increase uptake of ACSV by end users.

I Your feedback will be useful. Please give it!

I Your offer to help proofread in 2022 will also be greatly
appreciated.



Embedding algebraic generating functions into rational ones

Advertisement

I Steve, Robin and I are writing the second edition of Analytic
Combinatorics in Several Variables.

I We aim to substantially increase uptake of ACSV by end users.

I Your feedback will be useful. Please give it!

I Your offer to help proofread in 2022 will also be greatly
appreciated.



Embedding algebraic generating functions into rational ones

Algebraic to rational

Algebraic GFs
I All GFs in this presentation are formal power series (some

things extend to Laurent series but we do not consider that
here).

I The ACSV project has extensive results for asymptotic
coefficient extraction from rational generating functions in
fixed dimension.

I Algebraic functions that are not rational occur in many
natural problems. In the univariate case, there is extensive
effective asymptotic theory (e.g. Flajolet-Sedgewick book;
Michael Drmota (here)).

I In general dimension,Torin Greenwood derived asymptotics for
special algebraic singularities, with very considerable work,
using custom contours.

I Can we instead treat algebraic functions by reducing to the
rational case, and using rational ACSV?
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Algebraic to rational

Diagonals
I We need to define diagonal more generally. Let

F (x) =
∑
r

arx
r

be a d-variate generating function and xo = (x2, x3, . . . , xd).

I The elementary diagonal is

∆F (xo) =
∑
r

ar2,r2,r3,...,rdx
r2
2 x

r3
3 . . . xrdd .

I Any composition of this operation with a permutation of
variables is called a diagonal of F , and the leading diagonal is
the GF diagF obtained by reducing to 1 variable.

I Old conjecture: every univariate D-finite GF (with mild
necessary conditions) is the leading diagonal of some rational
function.
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Algebraic to rational

Example (Multinomial coefficients)

Suppose

F (x, y, z) =
∑
r,s,t

(r + s+ t)!

r!s!t!
xryszt.

Then

∆F (y, z) =
∑
s,t

(2s+ t)!

s!2t!
yszt

and

∆∆F (z) = diagF (z) =
∑
t

(3t)!

t!3
zt.
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Algebraic to rational

Theorem (Furstenberg; Hautus & Klarner)

If F (x, y) is a rational power series in d = 2 variables then diagF
is algebraic.

Proof sketch.

Since F = P/Q converges in a neighborhood of the origin, when
|x| is sufficiently small the function F (x/y, y) is absolutely
convergent for y in some annulus A(x).
The constant term in y of F (x/y, y) equals diagF (x).
Cauchy’s integral formula yields, where C is any positively oriented
circle in A(x),

diagF (x) =
1

2πi

∫
C

P (x/y, y)

yQ(x/y, y)
dy

=
∑

y=α(x)

Res[F (x/y, y); y].

where the sum is over the roots α that are power series in x.
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Algebraic to rational

Going the other way (embedding)

Theorem (Furstenberg, Safonov)

Let f(x) be an algebraic d-variate power series with
P (x, f(x)) = 0 for some P (x, y) ∈ C[x, y]. Suppose further that
f(0, x2, . . . , xd) = 0 and Py(0, 0) 6= 0. Then

f(x) = ∆
y2Py(x1y, x2, . . . , xd, y)

P (x1y, x2, . . . , xd, y)
.

Proof sketch.

The hypotheses imply that there is a single branch of the algebraic
function through the origin, and it can be computed as a residue
using the Argument Principle, inverting the diagonal extraction
above.
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Algebraic to rational

Example

The Narayana GF
∑

r,s arsx
rys embeds in

F (u, x, y) =
u(1− 2u− ux(1− y))

1− u− xy − ux(1− y)
=
∑
r,s,t

btrsu
txrys.

and ars = brrs.
Also putting y = 1 yields shifted Catalan GF∑

n cnx
n = (1−

√
1− 4x)/2 which embeds in

F (u, x) =
u(1− 2u)

(1− u− x)

so specialization commutes with embedding for this method.
To derive asymptotics when r = αn, s = βn, we consider the
direction determined by (α, α, β). Smooth point analysis works
nicely!
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Algebraic to rational

General results on embedding

I Denef & Lipshitz (1987): embedding into dimension 2d

I Adamczewski & Bell (2013): effective embedding into
dimension 2d

I Denef & Lipshitz (1987): unimodular change of indices,
embedding into dimension d+ 1

I Safonov (2000); unimodular change of indices, effective
embedding into dimension d+ 1

They all require separation of the branches of the algebraic
function, hence resolution of singularities. All make various
changes of variable to reduce to the single branch (“étale”) case.
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Algebraic to rational

ACSV issues

I The rational functions R obtained by the above methods are
not in general combinatorial.

I They often have a contributing critical point at infinity.

I The leading term in our asymptotic formulae vanishes.

I If we could ensure that R is combinatorial, it would help
considerably.
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Algebraic to rational

Example (Safonov)

Let
f(x, y) = x

√
1− x− y.

Then F is not the elementary diagonal of any 3-variable rational
GF. However, we have

F (u, x, y) =
ux(2 + x+ xy + 2u2 + 3u)

2 + u+ x+ xy

=
∑
t,r,s

atrsu
txrys

and
f(x, y) =

∑
r,s

ar+s,r+s,sx
rys.
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Algebraic to rational

Example (simplest univariate with more than one branch)

Let f(x) = x/
√

1− x. This is combinatorial, having all
nonnegative coefficients. Also f = diagF where

F (x, u) =
2xu

2 + x+ u

Note that (x, y) 7→ (−x,−y) shows that f = diagF where

F (x, u) =
2xu

2− x− u

and F is combinatorial.
However, the above-mentioned methods yield different
embeddings. For example Safonov gives(

2 (xu− 1)(u+ 1)u

xu2 + 2xu+ x− u− 2
+ 1

)
xu.
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Algebraic to rational

Research questions

I What is the deeper connection between the different F each
yielding diagF = f?

I Can we always choose R to be combinatorial and “nice”
(amenable to ACSV)?

I When do we get critical points at infinity? Can we deal with
them easily?
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Algebraic to rational

References

I Greenwood, Melczer, Ruza, Wilson (FPSAC 2022,
https://arxiv.org/pdf/2112.04601.pdf) show that the
Furstenberg procedure, with some tweaks, deals with maybe
half of natural combinatorial examples.

I Our test problem collection:
https://acsvproject.com/AlgTest.pdf

I Adamczewski & Bell, Ann. Sci. ENS 2013 http://www.

numdam.org/article/ASENS_2013_4_46_6_963_0.pdf

I Safonov 2000 (very hard to find a good version online, but we
have something).

I My CoCalc Jupyter notebook using Sage:
https://tinyurl.com/ftunjhy9.

http://www.numdam.org/article/ASENS_2013_4_46_6_963_0.pdf
http://www.numdam.org/article/ASENS_2013_4_46_6_963_0.pdf


Embedding algebraic generating functions into rational ones

Algebraic to rational

References

I Greenwood, Melczer, Ruza, Wilson (FPSAC 2022,
https://arxiv.org/pdf/2112.04601.pdf) show that the
Furstenberg procedure, with some tweaks, deals with maybe
half of natural combinatorial examples.

I Our test problem collection:
https://acsvproject.com/AlgTest.pdf

I Adamczewski & Bell, Ann. Sci. ENS 2013 http://www.

numdam.org/article/ASENS_2013_4_46_6_963_0.pdf

I Safonov 2000 (very hard to find a good version online, but we
have something).

I My CoCalc Jupyter notebook using Sage:
https://tinyurl.com/ftunjhy9.

http://www.numdam.org/article/ASENS_2013_4_46_6_963_0.pdf
http://www.numdam.org/article/ASENS_2013_4_46_6_963_0.pdf


Embedding algebraic generating functions into rational ones

Algebraic to rational

References

I Greenwood, Melczer, Ruza, Wilson (FPSAC 2022,
https://arxiv.org/pdf/2112.04601.pdf) show that the
Furstenberg procedure, with some tweaks, deals with maybe
half of natural combinatorial examples.

I Our test problem collection:
https://acsvproject.com/AlgTest.pdf

I Adamczewski & Bell, Ann. Sci. ENS 2013 http://www.

numdam.org/article/ASENS_2013_4_46_6_963_0.pdf

I Safonov 2000 (very hard to find a good version online, but we
have something).

I My CoCalc Jupyter notebook using Sage:
https://tinyurl.com/ftunjhy9.

http://www.numdam.org/article/ASENS_2013_4_46_6_963_0.pdf
http://www.numdam.org/article/ASENS_2013_4_46_6_963_0.pdf


Embedding algebraic generating functions into rational ones

Algebraic to rational

References

I Greenwood, Melczer, Ruza, Wilson (FPSAC 2022,
https://arxiv.org/pdf/2112.04601.pdf) show that the
Furstenberg procedure, with some tweaks, deals with maybe
half of natural combinatorial examples.

I Our test problem collection:
https://acsvproject.com/AlgTest.pdf

I Adamczewski & Bell, Ann. Sci. ENS 2013 http://www.

numdam.org/article/ASENS_2013_4_46_6_963_0.pdf

I Safonov 2000 (very hard to find a good version online, but we
have something).

I My CoCalc Jupyter notebook using Sage:
https://tinyurl.com/ftunjhy9.

http://www.numdam.org/article/ASENS_2013_4_46_6_963_0.pdf
http://www.numdam.org/article/ASENS_2013_4_46_6_963_0.pdf


Embedding algebraic generating functions into rational ones

Algebraic to rational

References

I Greenwood, Melczer, Ruza, Wilson (FPSAC 2022,
https://arxiv.org/pdf/2112.04601.pdf) show that the
Furstenberg procedure, with some tweaks, deals with maybe
half of natural combinatorial examples.

I Our test problem collection:
https://acsvproject.com/AlgTest.pdf

I Adamczewski & Bell, Ann. Sci. ENS 2013 http://www.

numdam.org/article/ASENS_2013_4_46_6_963_0.pdf

I Safonov 2000 (very hard to find a good version online, but we
have something).

I My CoCalc Jupyter notebook using Sage:
https://tinyurl.com/ftunjhy9.

http://www.numdam.org/article/ASENS_2013_4_46_6_963_0.pdf
http://www.numdam.org/article/ASENS_2013_4_46_6_963_0.pdf

	Algebraic to rational

